These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 9655345)

  • 41. Lactam bridge stabilization of alpha-helices: the role of hydrophobicity in controlling dimeric versus monomeric alpha-helices.
    Houston ME; Campbell AP; Lix B; Kay CM; Sykes BD; Hodges RS
    Biochemistry; 1996 Aug; 35(31):10041-50. PubMed ID: 8756466
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding dynamics of the src SH3 domain.
    Grantcharova VP; Baker D
    Biochemistry; 1997 Dec; 36(50):15685-92. PubMed ID: 9398297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of aromatic side chain size complementarity in the hydrophobic core of a designed coiled-coil.
    Sakurai Y; Mizuno T; Hiroaki H; Oku JI; Tanaka T
    J Pept Res; 2005 Dec; 66(6):387-94. PubMed ID: 16316455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils.
    Wagschal K; Tripet B; Hodges RS
    J Mol Biol; 1999 Jan; 285(2):785-803. PubMed ID: 9878444
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal ion-dependent modulation of the dynamics of a designed protein.
    Handel TM; Williams SA; DeGrado WF
    Science; 1993 Aug; 261(5123):879-85. PubMed ID: 8346440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison of three- and four-helix bundle TASP molecules.
    Causton AS; Sherman JC
    J Pept Sci; 2002 Jun; 8(6):275-82. PubMed ID: 12093004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulating protein structure with fluorous amino acids: increased stability and native-like structure conferred on a 4-helix bundle protein by hexafluoroleucine.
    Lee HY; Lee KH; Al-Hashimi HM; Marsh EN
    J Am Chem Soc; 2006 Jan; 128(1):337-43. PubMed ID: 16390163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrophobic core malleability of a de novo designed three-helix bundle protein.
    Walsh ST; Sukharev VI; Betz SF; Vekshin NL; DeGrado WF
    J Mol Biol; 2001 Jan; 305(2):361-73. PubMed ID: 11124911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of laminin chain assembly into a triple-stranded coiled-coil structure.
    Nomizu M; Utani A; Beck K; Otaka A; Roller PP; Yamada Y
    Biochemistry; 1996 Mar; 35(9):2885-93. PubMed ID: 8608125
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A designed four-alpha-helix bundle that binds the volatile general anesthetic halothane with high affinity.
    Johansson JS; Scharf D; Davies LA; Reddy KS; Eckenhoff RG
    Biophys J; 2000 Feb; 78(2):982-93. PubMed ID: 10653811
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops.
    Taylor JW; Greenfield NJ; Wu B; Privalov PL
    J Mol Biol; 1999 Aug; 291(4):965-76. PubMed ID: 10452900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Four-helix bundle cavitein reveals middle leucine as linchpin.
    Freeman JO; Wallhorn D; Sherman JC
    Biopolymers; 2007; 88(5):725-32. PubMed ID: 17351918
    [TBL] [Abstract][Full Text] [Related]  

  • 53. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers.
    Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G
    Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of i,i+5 and i,i+8 hydrophobic interactions in a helical model peptide bearing the hydrophobic staple motif.
    Muñoz V; Serrano L
    Biochemistry; 1995 Nov; 34(46):15301-6. PubMed ID: 7578146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cooperative stabilization of a molten globule apoflavodoxin fragment.
    Maldonado S; Jiménez MA; Langdon GM; Sancho J
    Biochemistry; 1998 Jul; 37(30):10589-96. PubMed ID: 9692948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability.
    Hodges RS; Zhu BY; Zhou NE; Mant CT
    J Chromatogr A; 1994 Jul; 676(1):3-15. PubMed ID: 7921179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple native-like conformations trapped via self-association-induced hydrophobic collapse of the 33-residue beta-sheet domain from platelet factor 4.
    Ilyina E; Mayo KH
    Biochem J; 1995 Mar; 306 ( Pt 2)(Pt 2):407-19. PubMed ID: 7887894
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Colicin E1 forms a dimer after urea-induced unfolding.
    Steer BA; DiNardo AA; Merrill AR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):631-8. PubMed ID: 10359646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unfolding of class A amphipathic peptides on a lipid surface.
    Clayton AH; Vultureanu AG; Sawyer WH
    Biochemistry; 2003 Feb; 42(6):1747-53. PubMed ID: 12578389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions.
    Iranzo O; Ghosh D; Pecoraro VL
    Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.