These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 9655508)

  • 41. Differential actions of PKA and PKC in the regulation of glutamate release by group III mGluRs in the entorhinal cortex.
    Evans DI; Jones RS; Woodhall G
    J Neurophysiol; 2001 Feb; 85(2):571-9. PubMed ID: 11160494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of protein kinase C in GH secretion induced by GH-releasing factor and GH-releasing peptides in cultured ovine somatotrophs.
    Wu D; Clarke IJ; Chen C
    J Endocrinol; 1997 Aug; 154(2):219-30. PubMed ID: 9291832
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors.
    Cho K; Francis JC; Hirbec H; Dev K; Brown MW; Henley JM; Bashir ZI
    J Physiol; 2003 May; 548(Pt 3):723-30. PubMed ID: 12640005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons.
    Abdul-Ghani MA; Valiante TA; Carlen PL; Pennefather PS
    J Neurophysiol; 1996 Oct; 76(4):2691-700. PubMed ID: 8899638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibitory regulation of constitutive transient receptor potential-like cation channels in rabbit ear artery myocytes.
    Albert AP; Large WA
    J Physiol; 2004 Oct; 560(Pt 1):169-80. PubMed ID: 15297579
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In the developing hippocampus kainate receptors control the release of GABA from mossy fiber terminals via a metabotropic type of action.
    Cherubini E; Caiati MD; Sivakumaran S
    Adv Exp Med Biol; 2011; 717():11-26. PubMed ID: 21713663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons.
    Cossart R; Tyzio R; Dinocourt C; Esclapez M; Hirsch JC; Ben-Ari Y; Bernard C
    Neuron; 2001 Feb; 29(2):497-508. PubMed ID: 11239438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of cAMP-PKA-PLC signaling cascade on dopamine-induced PKC-mediated inhibition of renal Na(+)-K(+)-ATPase activity.
    Gomes P; Soares-da-Silva P
    Am J Physiol Renal Physiol; 2002 Jun; 282(6):F1084-96. PubMed ID: 11997325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kindling enhances kainate receptor-mediated depression of GABAergic inhibition in rat granule cells.
    Behr J; Gebhardt C; Heinemann U; Mody I
    Eur J Neurosci; 2002 Sep; 16(5):861-7. PubMed ID: 12372022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Secretion of ATP from Schwann cells in response to uridine triphosphate.
    Liu GJ; Werry EL; Bennett MR
    Eur J Neurosci; 2005 Jan; 21(1):151-60. PubMed ID: 15654852
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NMDA and kainate-evoked release of nitric oxide and classical transmitters in the rat striatum: in vivo evidence that nitric oxide may play a neuroprotective role.
    Kendrick KM; Guevara-Guzman R; de la Riva C; Christensen J; Ostergaard K; Emson PC
    Eur J Neurosci; 1996 Dec; 8(12):2619-34. PubMed ID: 8996812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex involvement of pertussis toxin-sensitive G proteins in the regulation of type 1alpha metabotropic glutamate receptor signaling in baby hamster kidney cells.
    Hermans E; Saunders R; Selkirk JV; Mistry R; Nahorski SR; Challiss RA
    Mol Pharmacol; 2000 Aug; 58(2):352-60. PubMed ID: 10908303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of NMDA-stimulated [14C]GABA and [3H]acetylcholine release by striatal glutamate and dopamine receptors.
    Hanania T; Johnson KM
    Brain Res; 1999 Oct; 844(1-2):106-17. PubMed ID: 10536266
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission.
    Zhang C; Schmidt JT
    J Neurophysiol; 1999 Dec; 82(6):2947-55. PubMed ID: 10601431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: cyclic AMP as intracellular intermediary.
    Cheun JE; Yeh HH
    Neuroscience; 1996 Oct; 74(3):835-44. PubMed ID: 8884779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells.
    Melyan Z; Wheal HV; Lancaster B
    Neuron; 2002 Mar; 34(1):107-14. PubMed ID: 11931745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP.
    Mei YA; Vaudry D; Basille M; Castel H; Fournier A; Vaudry H; Gonzalez BJ
    Eur J Neurosci; 2004 Mar; 19(6):1446-58. PubMed ID: 15066141
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus.
    Rodríguez-Moreno A; Herreras O; Lerma J
    Neuron; 1997 Oct; 19(4):893-901. PubMed ID: 9354335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adrenergic control of a constitutively active acetylcholine-regulated potassium current in canine atrial cardiomyocytes.
    Yeh YH; Ehrlich JR; Qi X; Hébert TE; Chartier D; Nattel S
    Cardiovasc Res; 2007 Jun; 74(3):406-15. PubMed ID: 17343836
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hyposmotically induced amino acid release from the rat cerebral cortex: role of phospholipases and protein kinases.
    Estevez AY; O'Regan MH; Song D; Phillis JW
    Brain Res; 1999 Oct; 844(1-2):1-9. PubMed ID: 10536255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.