These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 9655607)
1. The effect of excitatory aminoacids on GABA release from mediobasal hypothalamus of female rats. Lasaga M; De Laurentiis A; Pampillo M; Pisera D; del Carmen Díaz M; Theas S; Duvilanski B; Seilicovich A Neurosci Lett; 1998 May; 247(2-3):119-22. PubMed ID: 9655607 [TBL] [Abstract][Full Text] [Related]
2. NMDA receptor-mediated control of GABA release from neurointermediate lobes of female and male rats. Pampillo M; De Laurentiis A; Duvilanski B; Pisera D; Díaz MC; Seilicovich A; Lasaga M Brain Res; 1999 Sep; 842(2):469-72. PubMed ID: 10526144 [TBL] [Abstract][Full Text] [Related]
3. Glutamate agonists and [3H]GABA release from rat hippocampal slices: involvement of metabotropic glutamate receptors in the quisqualate-evoked release. Janáky R; Varga V; Saransaari P; Oja SS Neurochem Res; 1994 Jun; 19(6):729-34. PubMed ID: 7915017 [TBL] [Abstract][Full Text] [Related]
4. Effect of excitatory amino acids on rat hypothalamic somatostatin secretion in vitro. Joanny P; Steinberg J; Oliver C; Grino M Peptides; 1997; 18(7):1039-43. PubMed ID: 9357063 [TBL] [Abstract][Full Text] [Related]
5. Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function. Pittaluga A; Bonfanti A; Raiteri M Naunyn Schmiedebergs Arch Pharmacol; 1997 Jul; 356(1):29-38. PubMed ID: 9228187 [TBL] [Abstract][Full Text] [Related]
6. Participation of NMDA and kainate receptors of paraventricular nucleus in cardiovascular responses to glutamate receptor agonist. Gören MZ; Onat F; Berkman K Eur J Pharmacol; 2000 Jan; 388(1):77-84. PubMed ID: 10657549 [TBL] [Abstract][Full Text] [Related]
7. NMDA and kainate-evoked release of nitric oxide and classical transmitters in the rat striatum: in vivo evidence that nitric oxide may play a neuroprotective role. Kendrick KM; Guevara-Guzman R; de la Riva C; Christensen J; Ostergaard K; Emson PC Eur J Neurosci; 1996 Dec; 8(12):2619-34. PubMed ID: 8996812 [TBL] [Abstract][Full Text] [Related]
8. Aspartate as a selective NMDA receptor agonist in cultured cells from the avian retina. Kubrusly RC; de Mello MC; de Mello FG Neurochem Int; 1998 Jan; 32(1):47-52. PubMed ID: 9460701 [TBL] [Abstract][Full Text] [Related]
9. Interaction between glutamate and GABA on 3H-noradrenaline release from rat hypothalamus. Navarro CE; Cabrera RJ; Donoso AO Brain Res Bull; 1995; 37(2):119-22. PubMed ID: 7606486 [TBL] [Abstract][Full Text] [Related]
10. Cholecystokinin (CCK) increases GABA release in the rat anterior nucleus accumbens via CCK(B) receptors located on glutamatergic interneurons. Lanza M; Makovec F Naunyn Schmiedebergs Arch Pharmacol; 2000 Jan; 361(1):33-8. PubMed ID: 10651144 [TBL] [Abstract][Full Text] [Related]
11. NMDA and non-NMDA receptor-mediated release of [3H]GABA from granule cell dendrites of rat olfactory bulb. García Y; Ibarra C; Jaffé EH J Neurochem; 1995 Feb; 64(2):662-9. PubMed ID: 7530292 [TBL] [Abstract][Full Text] [Related]
12. GABA release induced by aspartate-mediated activation of NMDA receptors is modulated by dopamine in a selective subpopulation of amacrine cells. Calaza KC; de Mello FG; Gardino PF J Neurocytol; 2001 Mar; 30(3):181-93. PubMed ID: 11709625 [TBL] [Abstract][Full Text] [Related]
13. Stimulation of glutamine synthetase activity by excitatory amino acids in astrocyte cultures derived from aged mouse cerebral hemispheres may be associated with non-N-methyl-D-aspartate receptor activation. Fleischer-Lambropoulos E; Kazazoglou T; Geladopoulos T; Kentroti S; Stefanis C; Vernadakis A Int J Dev Neurosci; 1996 Jul; 14(4):523-30. PubMed ID: 8884386 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of the N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors of the excitatory amino acids system on LH and FSH secretion. Its effects on the hypothalamic luteinizing hormone releasing hormone during maturation in male rats. Carbone S; Szwarcfarb B; Rondina D; Feleder C; Moguilevsky JA Brain Res; 1996 Jan; 707(2):139-45. PubMed ID: 8919290 [TBL] [Abstract][Full Text] [Related]
15. N-methyl-D-aspartate, kainate and quisqualate release endogenous adenosine from rat cortical slices. Hoehn K; White TD Neuroscience; 1990; 39(2):441-50. PubMed ID: 1982346 [TBL] [Abstract][Full Text] [Related]
16. The effect of experimental ischaemia and excitatory amino acid agonists on the GABA and serotonin immunoreactivities in the rabbit retina. Osborne NN; Herrera AJ Neuroscience; 1994 Apr; 59(4):1071-81. PubMed ID: 7520132 [TBL] [Abstract][Full Text] [Related]
17. Calcium influx via ionotropic glutamate receptors causes long lasting inhibition of metabotropic glutamate receptor-coupled phosphoinositide hydrolysis. Facchinetti F; Hack NJ; Balázs R Neurochem Int; 1998 Sep; 33(3):263-70. PubMed ID: 9759922 [TBL] [Abstract][Full Text] [Related]
18. Glutamate, kainate and quisqualate enhance GABA-dependent chloride uptake in cortex. Schatzki A; McMillian M; Miller LG Brain Res Bull; 1990 Aug; 25(2):239-43. PubMed ID: 1699637 [TBL] [Abstract][Full Text] [Related]
19. Regulation of NMDA-stimulated [14C]GABA and [3H]acetylcholine release by striatal glutamate and dopamine receptors. Hanania T; Johnson KM Brain Res; 1999 Oct; 844(1-2):106-17. PubMed ID: 10536266 [TBL] [Abstract][Full Text] [Related]
20. Ionotropic glutamate receptor types leading to adenosine-mediated inhibition of electrically evoked [3H]-noradrenaline release in rabbit brain cortex slices. von Kügelgen I; Späth L; Starke K Br J Pharmacol; 1993 Dec; 110(4):1544-50. PubMed ID: 7508327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]