BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9655906)

  • 21. Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis.
    Candy JM; Duggleby RG
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):7-13. PubMed ID: 8198554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Communication between thiamin cofactors in the Escherichia coli pyruvate dehydrogenase complex E1 component active centers: evidence for a "direct pathway" between the 4'-aminopyrimidine N1' atoms.
    Nemeria NS; Arjunan P; Chandrasekhar K; Mossad M; Tittmann K; Furey W; Jordan F
    J Biol Chem; 2010 Apr; 285(15):11197-209. PubMed ID: 20106967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of His113 and His114 in pyruvate decarboxylase from Zymomonas mobilis.
    Schenk G; Leeper FJ; England R; Nixon PF; Duggleby RG
    Eur J Biochem; 1997 Aug; 248(1):63-71. PubMed ID: 9310361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of substitution of tryptophan 412 in the substrate activation pathway of yeast pyruvate decarboxylase.
    Li H; Jordan F
    Biochemistry; 1999 Aug; 38(31):10004-12. PubMed ID: 10433707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4'-aminopyrimidinium and 1',4'-iminopyrimidine tautomeric forms in the absence of the conserved glutamate.
    Nemeria N; Binshtein E; Patel H; Balakrishnan A; Vered I; Shaanan B; Barak Z; Chipman D; Jordan F
    Biochemistry; 2012 Oct; 51(40):7940-52. PubMed ID: 22970650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of thiamine diphosphate in pyruvate decarboxylase from Zymomonas mobilis.
    Tittmann K; Mesch K; Pohl M; Hübner G
    FEBS Lett; 1998 Dec; 441(3):404-6. PubMed ID: 9891980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of thiamin diphosphate-dependent 2-oxo acid decarboxylases by substrate and thiamin diphosphate.Mg(II) - evidence for tertiary and quaternary interactions.
    Jordan F; Nemeria N; Guo F; Baburina I; Gao Y; Kahyaoglu A; Li H; Wang J; Yi J; Guest JR; Furey W
    Biochim Biophys Acta; 1998 Jun; 1385(2):287-306. PubMed ID: 9655921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate .
    Meyer D; Neumann P; Parthier C; Friedemann R; Nemeria N; Jordan F; Tittmann K
    Biochemistry; 2010 Sep; 49(37):8197-212. PubMed ID: 20715795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of a conserved loop of the beta-domain, not involved in thiamin diphosphate binding, in catalysis and substrate activation in yeast pyruvate decarboxylase.
    Joseph E; Wei W; Tittmann K; Jordan F
    Biochemistry; 2006 Nov; 45(45):13517-27. PubMed ID: 17087505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Spectroscopic study of the structure and intramolecular mobility of yeast pyruvate decarboxylase].
    Maskevich SA; Maskevich AA; Kivach LN; Chernikevich IP; Zabrodskaia SV; Oparin DA
    Bioorg Khim; 1993 Dec; 19(12):1148-57. PubMed ID: 8117333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex.
    Brown A; Nemeria N; Yi J; Zhang D; Jordan WB; Machado RS; Guest JR; Jordan F
    Biochemistry; 1997 Jul; 36(26):8071-81. PubMed ID: 9201955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation.
    Hohmann S; Meacock PA
    Biochim Biophys Acta; 1998 Jun; 1385(2):201-19. PubMed ID: 9655908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin.
    Nemeria NS; Shome B; DeColli AA; Heflin K; Begley TP; Meyers CF; Jordan F
    Biochemistry; 2016 Feb; 55(7):1135-48. PubMed ID: 26813608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae.
    Fiedler E; Thorell S; Sandalova T; Golbik R; König S; Schneider G
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):591-5. PubMed ID: 11773632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme.
    Candy JM; Duggleby RG
    Biochim Biophys Acta; 1998 Jun; 1385(2):323-38. PubMed ID: 9655927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies.
    Patel H; Nemeria NS; Andrews FH; McLeish MJ; Jordan F
    Biochemistry; 2014 Apr; 53(13):2145-52. PubMed ID: 24628377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical studies on the electronic and energetic properties of the aminopyrimidine part of thiamin diphosphate.
    Friedemann R; Neef H
    Biochim Biophys Acta; 1998 Jun; 1385(2):245-50. PubMed ID: 9655914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.
    Arjunan P; Chandrasekhar K; Sax M; Brunskill A; Nemeria N; Jordan F; Furey W
    Biochemistry; 2004 Mar; 43(9):2405-11. PubMed ID: 14992577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.