BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9655930)

  • 21. Multiple display of peptides and proteins on a macromolecular scaffold derived from a multienzyme complex.
    Domingo GJ; Orru' S; Perham RN
    J Mol Biol; 2001 Jan; 305(2):259-67. PubMed ID: 11124904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-dependence of intramolecular coupling of active sites in pyruvate dehydrogenase multienzyme complexes.
    Packman LC; Stanley CJ; Perham RN
    Biochem J; 1983 Aug; 213(2):331-8. PubMed ID: 6351839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermally induced changes of lipoate acetyltransferase inner core isolated from the Bacillus stearothermophilus pyruvate dehydrogenase complex.
    Aso Y; Nakajima A; Meno K; Ishiguro M
    Biosci Biotechnol Biochem; 2001 Mar; 65(3):698-701. PubMed ID: 11330694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and catalytic properties of "thermostable" fumarase from Bacillus stearothermophilus NU-10 and Thermus X-1.
    Cook WR; Ramaley RF
    Experientia Suppl; 1976; 26():207-22. PubMed ID: 939272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mobility and active-site coupling in 2-oxo acid dehydrogenase complexes.
    Roberts GC; Duckworth HW; Packman LC; Perham RN
    Ciba Found Symp; 1983; 93():47-71. PubMed ID: 6340997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A chaperonin from a thermophilic bacterium, Thermus thermophilus, that controls refoldings of several thermophilic enzymes.
    Taguchi H; Konishi J; Ishii N; Yoshida M
    J Biol Chem; 1991 Nov; 266(33):22411-8. PubMed ID: 1682319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting the contributions of a specific side-chain interaction to folding and catalysis of Bacillus stearothermophilus lactate dehydrogenase.
    Nicholls DJ; Wood IS; Nobbs TJ; Clarke AR; Holbrook JJ; Atkinson T; Scawen MD
    Eur J Biochem; 1993 Mar; 212(2):447-55. PubMed ID: 8444183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of pyruvate dehydrogenase to the core of the human pyruvate dehydrogenase complex.
    Korotchkina LG; Patel MS
    FEBS Lett; 2008 Feb; 582(3):468-72. PubMed ID: 18206651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermotoga maritima, have different catalytic mechanisms.
    Smith ET; Blamey JM; Adams MW
    Biochemistry; 1994 Feb; 33(4):1008-16. PubMed ID: 8305427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase.
    Walker JE; Wonacott AJ; Harris JI
    Eur J Biochem; 1980 Jul; 108(2):581-6. PubMed ID: 7408869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of the binding site on E1 in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus.
    Jung HI; Perham RN
    FEBS Lett; 2003 Dec; 555(2):405-10. PubMed ID: 14644451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The delta-subunit of pyruvate ferredoxin oxidoreductase from Pyrococcus furiosus is a redox-active, iron-sulfur protein: evidence for an ancestral relationship with 8Fe-type ferredoxins.
    Menon AL; Hendrix H; Hutchins A; Verhagen MF; Adams MW
    Biochemistry; 1998 Sep; 37(37):12838-46. PubMed ID: 9737861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isocitrate dehydrogenase from thermophilic and mesophilic bacteria. Isolation and some characteristics.
    Edlin JD; Sundaram TK
    Int J Biochem; 1989; 21(11):1203-10. PubMed ID: 2515075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicochemical and catalytic properties of thermostable malate dehydrogenase from an extreme thermophile Thermus flavus AT-62.
    Iijima S; Saiki T; Beppu T
    Biochim Biophys Acta; 1980; 613(1):1-9. PubMed ID: 6769486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase complex of Bacillus stearothermophilus: preparation and characterization of its binding to the dihydrolipoyl dehydrogenase component.
    Hipps DS; Packman LC; Allen MD; Fuller C; Sakaguchi K; Appella E; Perham RN
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):137-43. PubMed ID: 8280091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Vitamin B1].
    Inui H; Nakano Y
    Nihon Rinsho; 1999 Oct; 57(10):2187-92. PubMed ID: 10540860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical study of the catalytic mechanism of E1 subunit of pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus.
    Sheng X; Liu Y
    Biochemistry; 2013 Nov; 52(45):8079-93. PubMed ID: 24171427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic analysis of the binding of component enzymes in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus.
    Jung HI; Bowden SJ; Cooper A; Perham RN
    Protein Sci; 2002 May; 11(5):1091-100. PubMed ID: 11967366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence and structural comparison of thermophilic phosphoglycerate kinases with a mesophilic equivalent.
    Fleming T; Littlechild J
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):439-51. PubMed ID: 9406428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria. II) The primary structure of thermophilic lactate dehydrogenase from Bacillus stearothermophilus. Cyanogen bromide fragments and partial sequence.
    Tratschin JD; Wirz B; Frank G; Zuber H
    Hoppe Seylers Z Physiol Chem; 1983 Jul; 364(7):879-92. PubMed ID: 6618448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.