These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 965606)

  • 1. Variations in concentrations and interrelationships of phytate, phosphorus, magnesium, calcium, zinc, and iron in wheat varieties during two years.
    Nahapetian A; Bassiri A
    J Agric Food Chem; 1976; 24(5):947-50. PubMed ID: 965606
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in concentrations and interrelationships of phytate, phosphorus, magnesium, calcium, and zinc in wheat during maturation.
    Nahapetian A; Bassiri A
    J Agric Food Chem; 1975; 23(6):1179-82. PubMed ID: 1194585
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of wheat bran on the absorption of minerals in the small intestine.
    Sandberg AS; Hasselblad C; Hasselblad K; Hultén L
    Br J Nutr; 1982 Sep; 48(2):185-91. PubMed ID: 6288067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of prolonged consumption of wholemeal bread upon metabolism of calcium, magnesium, zinc and phosphorus of two young American adults.
    Campbell BJ; Reinhold JG; Cannell JJ; Nourmand I
    Pahlavi Med J; 1976 Jan; 7(1):1-17. PubMed ID: 1264463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.).
    Yang XW; Tian XH; Lu XC; Cao YX; Chen ZH
    J Sci Food Agric; 2011 Oct; 91(13):2322-8. PubMed ID: 21547926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements.
    Lemmens E; De Brier N; Spiers KM; Ryan C; Garrevoet J; Falkenberg G; Goos P; Smolders E; Delcour JA
    Food Chem; 2018 Oct; 264():367-376. PubMed ID: 29853389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.
    Iwai T; Takahashi M; Oda K; Terada Y; Yoshida KT
    Plant Physiol; 2012 Dec; 160(4):2007-14. PubMed ID: 23090587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment.
    Gujar PD; Bhavsar KP; Khire JM
    J Sci Food Agric; 2013 Jul; 93(9):2242-7. PubMed ID: 23355258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium, magnesium, zinc, and iron balances in young women: effects of a low-phytate barley-fiber concentrate.
    Wisker E; Nagel R; Tanudjaja TK; Feldheim W
    Am J Clin Nutr; 1991 Sep; 54(3):553-9. PubMed ID: 1652199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MINERAL UTILIZATION IN THE RAT. IV. EFFECTS OF CALCIUM AND PHYTIC ACID ON THE UTILIZATION OF DIETARY ZINC.
    Likuski HJ; Forbes RM
    J Nutr; 1965 Mar; 85(3):230-4. PubMed ID: 14261831
    [No Abstract]   [Full Text] [Related]  

  • 12. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase.
    Bohn L; Josefsen L; Meyer AS; Rasmussen SK
    J Agric Food Chem; 2007 Sep; 55(18):7547-52. PubMed ID: 17696444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro availability of iron and zinc in white and coloured ragi (Eleusine coracana): role of tannin and phytate.
    Udayasekhara Rao P; Deosthale YG
    Plant Foods Hum Nutr; 1988; 38(1):35-41. PubMed ID: 3231591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.
    Rehman A; Farooq M; Nawaz A; Al-Sadi AM; Al-Hashmi KS; Nadeem F; Ullah A
    J Sci Food Agric; 2018 Oct; 98(13):4824-4836. PubMed ID: 29542137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minerals, macro and micro: dynamic nutrients. I. The macro-minerals.
    Snively WD; Becker B
    Ann Allergy; 1968 Apr; 26(4):167-76 contd. PubMed ID: 5654958
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolation of monoferric phytate from wheat bran and its biological value as an iron source to the rat.
    Morris ER; Ellis R
    J Nutr; 1976 Jun; 106(6):753-60. PubMed ID: 1271118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread.
    Reinhold JG; Faradji B; Abadi P; Ismail-Beigi F
    J Nutr; 1976 Apr; 106(4):493-503. PubMed ID: 1255269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin.
    Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H
    J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytate destruction by yeast fermentation in whole wheat meals. Study of high-extraction rate meals.
    Reinhold JG
    J Am Diet Assoc; 1975 Jan; 66(1):38-41. PubMed ID: 234141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.