BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 9656482)

  • 1. Phylogenetic relationships and developmental expression of three sea urchin Wnt genes.
    Ferkowicz MJ; Stander MC; Raff RA
    Mol Biol Evol; 1998 Jul; 15(7):809-19. PubMed ID: 9656482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode.
    Ferkowicz MJ; Raff RA
    Evol Dev; 2001; 3(1):24-33. PubMed ID: 11256431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus.
    Croce JC; Wu SY; Byrum C; Xu R; Duloquin L; Wikramanayake AH; Gache C; McClay DR
    Dev Biol; 2006 Dec; 300(1):121-31. PubMed ID: 17069790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural organization of the sea urchin DNA (cytosine-5)-methyltransferase gene and characterization of five alternative spliced transcripts.
    Aniello F; Villano G; Corrado M; Locascio A; Russo MT; D'Aniello S; Francone M; Fucci L; Branno M
    Gene; 2003 Jan; 302(1-2):1-9. PubMed ID: 12527191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma.
    Kauffman JS; Raff RA
    Dev Genes Evol; 2003 Dec; 213(12):612-24. PubMed ID: 14618401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters.
    Poustka AJ; Groth D; Hennig S; Thamm S; Cameron A; Beck A; Reinhardt R; Herwig R; Panopoulou G; Lehrach H
    Genome Res; 2003 Dec; 13(12):2736-46. PubMed ID: 14656975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system.
    Smith LC; Shih CS; Dachenhausen SG
    J Immunol; 1998 Dec; 161(12):6784-93. PubMed ID: 9862709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the fibropellin gene family and patterns of fibropellin gene expression in sea urchin phylogeny.
    Bisgrove BW; Andrews ME; Raff RA
    J Mol Evol; 1995 Jul; 41(1):34-45. PubMed ID: 7608987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning of the ets proto-oncogene of the sea urchin and analysis of its developmental expression.
    Chen ZQ; Kan NC; Pribyl L; Lautenberger JA; Moudrianakis E; Papas TS
    Dev Biol; 1988 Feb; 125(2):432-40. PubMed ID: 3276571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid evolution in a conserved gene family. Evolution of the actin gene family in the sea urchin genus Heliocidaris and related genera.
    Kissinger JC; Hahn JH; Raff RA
    Mol Biol Evol; 1997 Jun; 14(6):654-65. PubMed ID: 9190067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcripts containing the sea urchin retroposon family 1 (SURF1) in embryos of the sea urchin Anthocidaris crassispina.
    Yamaguchi M; Ohba Y
    Zoolog Sci; 1997 Dec; 14(6):947-52. PubMed ID: 9520637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and evolution of CyI cytoplasmic actin-encoding genes in the indirect- and direct-developing sea urchins Heliocidaris tuberculata and Heliocidaris erythrogramma.
    Hahn JH; Kissinger JC; Raff RA
    Gene; 1995 Feb; 153(2):219-24. PubMed ID: 7875592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of homeobox-containing genes in the sea urchin (Parancentrotus lividus) embryo.
    Di Bernardo M; Russo R; Oliveri P; Melfi R; Spinelli G
    Genetica; 1994; 94(2-3):141-50. PubMed ID: 7896135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of sea urchin unconventional myosins and analysis of their patterns of expression during early embryogenesis.
    Sirotkin V; Seipel S; Krendel M; Bonder EM
    Mol Reprod Dev; 2000 Oct; 57(2):111-26. PubMed ID: 10984411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of three mRNAs enriched in embryos of the direct-developing sea urchin Heliocidaris erythrogramma: evolution of larval ectoderm.
    Haag ES; Raff RA
    Dev Genes Evol; 1998 Jun; 208(4):188-204. PubMed ID: 9634485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of HLC-32, a 32-kDa protein component of the sea urchin extraembryonic matrix, the hyaline layer.
    Brennan C; Robinson JJ
    Dev Biol; 1994 Oct; 165(2):556-65. PubMed ID: 7958421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversification of the Wnt gene family on the ancestral lineage of vertebrates.
    Sidow A
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):5098-102. PubMed ID: 1534411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cDNA hox sequences 3' of the homeobox isolated from the sea urchin Holopneustes purpurescens are definitive for sea urchin Hox orthologues.
    Morris VB; Brammall J; Byrne M; Frommer M
    DNA Seq; 2002 Aug; 13(4):185-93. PubMed ID: 12487020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An engrailed class homeo box gene in sea urchins.
    Dolecki GJ; Humphreys T
    Gene; 1988 Apr; 64(1):21-31. PubMed ID: 2899533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.