These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9656484)

  • 61. The evolution of Ty1-copia group retrotransposons in eukaryote genomes.
    Flavell AJ; Pearce SR; Heslop-Harrison P; Kumar A
    Genetica; 1997; 100(1-3):185-95. PubMed ID: 9440272
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transformation distances: a family of dissimilarity measures based on movements of segments.
    Varré JS; Delahaye JP; Rivals E
    Bioinformatics; 1999 Mar; 15(3):194-202. PubMed ID: 10222406
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tirant: a new retrotransposon-like element in Drosophila melanogaster.
    Moltó MD; Paricio N; López-Preciado MA; Semeshin VF; Martínez-Sebastián MJ
    J Mol Evol; 1996 Mar; 42(3):369-75. PubMed ID: 8661998
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-resolution cartography of recently integrated human chromosome 19-specific Alu fossils.
    Arcot SS; Adamson AW; Risch GW; LaFleur J; Robichaux MB; Lamerdin JE; Carrano AV; Batzer MA
    J Mol Biol; 1998 Sep; 281(5):843-56. PubMed ID: 9719639
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sequence polymorphisms in the long terminal repeat of bovine leukemia virus: evidence for selection pressures in regulatory sequences.
    Zhao X; Jimenez C; Sentsui H; Buehring GC
    Virus Res; 2007 Mar; 124(1-2):113-24. PubMed ID: 17123656
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors.
    Vandergon TL; Reitman M
    Mol Biol Evol; 1994 Nov; 11(6):886-98. PubMed ID: 7815928
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes.
    Kalmykova AI; Kwon DA; Rozovsky YM; Hueber N; Capy P; Maisonhaute C; Gvozdev VA
    Mol Biol Evol; 2004 Dec; 21(12):2281-9. PubMed ID: 15356284
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The new RENT family of repetitive elements in Nicotiana species harbors gene regulatory elements related to the tCUP cryptic promoter.
    Foster E; Hattori J; Zhang P; Labbé H; Martin-Heller T; Li-Pook-Than J; Ouellet T; Malik K; Miki B
    Genome; 2003 Feb; 46(1):146-55. PubMed ID: 12669807
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Panzee, a copia-like retrotransposon from the grain legume, pigeonpea ( Cajanus cajan L.).
    Lall IP; Maneesha ; Upadhyaya KC
    Mol Genet Genomics; 2002 May; 267(3):271-80. PubMed ID: 12073029
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of two subfamilies of micropia transposable element in species of the repleta group of Drosophila.
    de Almeida LM; Carareto CM
    Genetica; 2004 Jun; 121(2):155-64. PubMed ID: 15330115
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of rDNA-specific non-LTR retrotransposons in Cnidaria.
    Kojima KK; Kuma K; Toh H; Fujiwara H
    Mol Biol Evol; 2006 Oct; 23(10):1984-93. PubMed ID: 16870681
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes.
    Volff JN; Körting C; Schartl M
    Mol Biol Evol; 2000 Nov; 17(11):1673-84. PubMed ID: 11070055
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses.
    Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL
    Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements.
    Bringaud F; Ghedin E; Blandin G; Bartholomeu DC; Caler E; Levin MJ; Baltz T; El-Sayed NM
    Mol Biochem Parasitol; 2006 Feb; 145(2):158-70. PubMed ID: 16257065
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Presence of retroelements reveal the evolutionary history of the human DR haplotypes.
    Svensson AC; Andersson G
    Hereditas; 1997; 127(1-2):113-24. PubMed ID: 9420477
    [TBL] [Abstract][Full Text] [Related]  

  • 76. TET enzymes: double agents in the transposable element-host genome conflict.
    Gerdes P; Richardson SR; Faulkner GJ
    Genome Biol; 2016 Dec; 17(1):259. PubMed ID: 27993162
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Compositional bimodality of the nuclear genome of tobacco.
    Matassi G; Melis R; Macaya G; Bernardi G
    Nucleic Acids Res; 1991 Oct; 19(20):5561-7. PubMed ID: 1658735
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Secondary structures for 5' regions of R2 retrotransposon RNAs reveal a novel conserved pseudoknot and regions that evolve under different constraints.
    Kierzek E; Christensen SM; Eickbush TH; Kierzek R; Turner DH; Moss WN
    J Mol Biol; 2009 Jul; 390(3):428-42. PubMed ID: 19397915
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Retrotransposon Mys was active during evolution of the Peromyscus leucopus-maniculatus complex.
    Lee RN; Jaskula JC; van den Bussche RA; Baker RJ; Wichman HA
    J Mol Evol; 1996 Jan; 42(1):44-51. PubMed ID: 8576963
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The evolution of the human genome.
    Simonti CN; Capra JA
    Curr Opin Genet Dev; 2015 Dec; 35():9-15. PubMed ID: 26338498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.