These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9656484)

  • 81. Genome-wide oscillations in G + C density and sequence conservation.
    Moqtaderi Z; Brown S; Bender W
    Genome Res; 2021 Nov; 31(11):2050-2057. PubMed ID: 34649930
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Tnt1 retrotransposon tagging of STF in Medicago truncatula reveals tight coordination of metabolic, hormonal and developmental signals during leaf morphogenesis.
    Tadege M; Mysore KS
    Mob Genet Elements; 2011 Nov; 1(4):301-303. PubMed ID: 22545243
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Studying statistical properties of regulatory DNA sequences, and their use in predicting regulatory regions in the eukaryotic genomes.
    Abnizova I; Gilks WR
    Brief Bioinform; 2006 Mar; 7(1):48-54. PubMed ID: 16761364
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Retroelements: propagation and adaptation.
    Hull R; Covey SN
    Virus Genes; 1995; 11(2-3):105-18. PubMed ID: 8828139
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Estimating the age of retrotransposon subfamilies using maximum likelihood.
    Marchani EE; Xing J; Witherspoon DJ; Jorde LB; Rogers AR
    Genomics; 2009 Jul; 94(1):78-82. PubMed ID: 19379804
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Consequences of cis-regulatory sequence variation.
    Fudge JB
    Nat Biotechnol; 2023 Feb; 41(2):194. PubMed ID: 36792710
    [No Abstract]   [Full Text] [Related]  

  • 87. Concentrating on intrinsic disorder.
    Strzyz P
    Nat Rev Genet; 2018 Sep; 19(9):534. PubMed ID: 30013225
    [No Abstract]   [Full Text] [Related]  

  • 88. miRNA-like secondary structures in maize (
    Martin GT; Solares E; Guadardo-Mendez J; Muyle A; Bousios A; Gaut BS
    Genome Res; 2023 Dec; 33(11):1932-1946. PubMed ID: 37918960
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Genome relationships and LTR-retrotransposon diversity in three cultivated Capsicum L. (Solanaceae) species.
    de Assis R; Baba VY; Cintra LA; Gonçalves LSA; Rodrigues R; Vanzela ALL
    BMC Genomics; 2020 Mar; 21(1):237. PubMed ID: 32183698
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4.
    Wang Y; Wu Y; Gong Q; Ismayil A; Yuan Y; Lian B; Jia Q; Han M; Deng H; Hong Y; Hanley-Bowdoin L; Qi Y; Liu Y
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30626668
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A role for palindromic structures in the cis-region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response.
    Bousios A; Diez CM; Takuno S; Bystry V; Darzentas N; Gaut BS
    Genome Res; 2016 Feb; 26(2):226-37. PubMed ID: 26631490
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Virus-like attachment sites and plastic CpG islands:landmarks of diversity in plant Del retrotransposons.
    Cruz GM; Metcalfe CJ; de Setta N; Cruz EA; Vieira AP; Medina R; Van Sluys MA
    PLoS One; 2014; 9(5):e97099. PubMed ID: 24849372
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage.
    Jeong DH; Park S; Zhai J; Gurazada SG; De Paoli E; Meyers BC; Green PJ
    Plant Cell; 2011 Dec; 23(12):4185-207. PubMed ID: 22158467
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Ttd1a promoter is involved in DNA-protein binding by salt and light stresses.
    Woodrow P; Pontecorvo G; Ciarmiello LF; Fuggi A; Carillo P
    Mol Biol Rep; 2011 Aug; 38(6):3787-94. PubMed ID: 21104438
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Highly conserved motifs in non-coding regions of Sirevirus retrotransposons: the key for their pattern of distribution within and across plants?
    Bousios A; Darzentas N; Tsaftaris A; Pearce SR
    BMC Genomics; 2010 Feb; 11():89. PubMed ID: 20132532
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The frequent transcriptional readthrough of the tobacco Tnt1 retrotransposon and its possible implications for the control of resistance genes.
    Hernández-Pinzón I; de Jesús E; Santiago N; Casacuberta JM
    J Mol Evol; 2009 Mar; 68(3):269-78. PubMed ID: 19221683
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species.
    Manetti ME; Rossi M; Nakabashi M; Grandbastien MA; Van Sluys MA
    Mol Genet Genomics; 2009 Mar; 281(3):261-71. PubMed ID: 19093134
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light.
    Ramallo E; Kalendar R; Schulman AH; Martínez-Izquierdo JA
    Plant Mol Biol; 2008 Jan; 66(1-2):137-50. PubMed ID: 18034313
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules.
    Salazar M; González E; Casaretto JA; Casacuberta JM; Ruiz-Lara S
    Plant Cell Rep; 2007 Oct; 26(10):1861-8. PubMed ID: 17583815
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum).
    Petit M; Lim KY; Julio E; Poncet C; Dorlhac de Borne F; Kovarik A; Leitch AR; Grandbastien MA; Mhiri C
    Mol Genet Genomics; 2007 Jul; 278(1):1-15. PubMed ID: 17375323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.