BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9657055)

  • 1. Anthraquinones from Neonauclea calycina and their inhibitory activity against DNA topoisomerase II.
    Tosa H; Iinuma M; Asai F; Tanaka T; Nozaki H; Ikeda S; Tsutsui K; Tsutsui K; Yamada M; Fujimori S
    Biol Pharm Bull; 1998 Jun; 21(6):641-2. PubMed ID: 9657055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico screening of anthraquinones from Prismatomeris memecyloides as novel phosphodiesterase type-5 inhibitors (PDE-5Is).
    Khanh PN; Huong TT; Spiga O; Trezza A; Son NT; Cuong TD; Ha VT; Cuong NM
    Rev Int Androl; 2018; 16(4):147-158. PubMed ID: 30286869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico and in vivo study of anti-inflammatory activity of Morinda longissima (Rubiaceae) extract and phytochemicals for treatment of inflammation-mediated diseases.
    Mehallah H; Djebli N; Ngoc Khanh P; Xuan Ha N; Thi Ha V; Thu Huong T; Dinh Tung D; Manh Cuong N
    J Ethnopharmacol; 2024 Jun; 328():118051. PubMed ID: 38493905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological activity of Anthraquinones and Triterpenoids from Prismatomeris fragrans.
    Kanokmedhakul K; Kanokmedhakul S; Phatchana R
    J Ethnopharmacol; 2005 Sep; 100(3):284-8. PubMed ID: 15885942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of morinda elliptica.
    Ali AM; Ismail NH; Mackeen MM; Yazan LS; Mohamed SM; Ho AS; Lajis NH
    Pharm Biol; 2000; 38(4):298-301. PubMed ID: 21214480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro.
    Yoo NH; Jang DS; Lee YM; Jeong IH; Cho JH; Kim JH; Kim JS
    Arch Pharm Res; 2010 Feb; 33(2):209-14. PubMed ID: 20195820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constituents with DNA topoisomerases I and II inhibitory activity and cytotoxicity from the roots of Rubia cordifolia.
    Jeong SY; Zhao BT; Lee CS; Son JK; Min BS; Woo MH
    Planta Med; 2012 Jan; 78(2):177-81. PubMed ID: 21979931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae).
    Osman CP; Ismail NH; Ahmad R; Ahmat N; Awang K; Jaafar FM
    Molecules; 2010 Oct; 15(10):7218-26. PubMed ID: 20966871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial anthraquinones from Morinda angustifolia.
    Xiang W; Song QS; Zhang HJ; Guo SP
    Fitoterapia; 2008 Dec; 79(7-8):501-4. PubMed ID: 18621113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiplasmodial quinones from Pentas longiflora and Pentas lanceolata.
    Endale M; Alao JP; Akala HM; Rono NK; Eyase FL; Derese S; Ndakala A; Mbugua M; Walsh DS; Sunnerhagen P; Erdelyi M; Yenesew A
    Planta Med; 2012 Jan; 78(1):31-5. PubMed ID: 21979929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three new and antitumor anthraquinone glycosides from Lasianthus acuminatissimus MERR.
    Li B; Zhang DM; Luo YM; Chen XG
    Chem Pharm Bull (Tokyo); 2006 Mar; 54(3):297-300. PubMed ID: 16508180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new anthraquinone from Morinda citrifolia roots.
    Ee GC; Wen YP; Sukari MA; Go R; Lee HL
    Nat Prod Res; 2009; 23(14):1322-9. PubMed ID: 19735047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthraquinones from the roots of Prismatomeris malayana.
    Tuntiwachwuttikul P; Butsuri Y; Sukkoet P; Prawat U; Taylor WC
    Nat Prod Res; 2008; 22(11):962-8. PubMed ID: 18629711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer constituents from the roots of Rubia cordifolia L.
    Son JK; Jung SJ; Jung JH; Fang Z; Lee CS; Seo CS; Moon DC; Min BS; Kim MR; Woo MH
    Chem Pharm Bull (Tokyo); 2008 Feb; 56(2):213-6. PubMed ID: 18239313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of DNA topoisomerases I and II of compounds from Reynoutria japonica.
    Hwangbo K; Zheng MS; Kim YJ; Im JY; Lee CS; Woo MH; Jahng Y; Chang HW; Son JK
    Arch Pharm Res; 2012 Sep; 35(9):1583-9. PubMed ID: 23054715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morindaquinone, a new bianthraquinone from
    Chokchaisiri S; Siriwattanasathien Y; Thongbamrer C; Suksamrarn A; Rukachaisirikul T
    Nat Prod Res; 2021 Oct; 35(20):3439-3445. PubMed ID: 31876434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Anthraquinones from the roots of Knoxia valerianoides].
    Zhao F; Wang S; Wu X; Yu Y; Yue Z; Liu B; Lin S; Zhu C; Yang Y; Shi J
    Zhongguo Zhong Yao Za Zhi; 2011 Nov; 36(21):2980-6. PubMed ID: 22308688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity of anthraquinones from the roots of Pentas schimperi towards multi-factorial drug-resistant cancer cells.
    Kuete V; Donfack AR; Mbaveng AT; Zeino M; Tane P; Efferth T
    Invest New Drugs; 2015 Aug; 33(4):861-9. PubMed ID: 26115800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticancer Potential of Damnacanthal and Nordamnacanthal from
    Latifah SY; Gopalsamy B; Abdul Rahim R; Manaf Ali A; Haji Lajis N
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33808969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and extraction of lucidin primeveroside from Rubia tinctorum L. and crystal structure elucidation.
    Henderson RL; Rayner CM; Blackburn RS
    Phytochemistry; 2013 Nov; 95():105-8. PubMed ID: 23891215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.