BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9657146)

  • 21. Vac8p release from the SNARE complex and its palmitoylation are coupled and essential for vacuole fusion.
    Veit M; Laage R; Dietrich L; Wang L; Ungermann C
    EMBO J; 2001 Jun; 20(12):3145-55. PubMed ID: 11406591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.
    Burd CG; Peterson M; Cowles CR; Emr SD
    Mol Biol Cell; 1997 Jun; 8(6):1089-104. PubMed ID: 9201718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis.
    Steel GJ; Harley C; Boyd A; Morgan A
    Mol Biol Cell; 2000 Apr; 11(4):1345-56. PubMed ID: 10749934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion.
    Jun Y; Xu H; Thorngren N; Wickner W
    EMBO J; 2007 Dec; 26(24):4935-45. PubMed ID: 18007597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trans-SNARE complex assembly and yeast vacuole membrane fusion.
    Collins KM; Wickner WT
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8755-60. PubMed ID: 17502611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A small-molecule competitive inhibitor of phosphatidic acid binding by the AAA+ protein NSF/Sec18 blocks the SNARE-priming stage of vacuole fusion.
    Sparks RP; Arango AS; Starr ML; Aboff ZL; Hurst LR; Rivera-Kohr DA; Zhang C; Harnden KA; Jenkins JL; Guida WC; Tajkhorshid E; Fratti RA
    J Biol Chem; 2019 Nov; 294(46):17168-17185. PubMed ID: 31515268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole.
    Darsow T; Rieder SE; Emr SD
    J Cell Biol; 1997 Aug; 138(3):517-29. PubMed ID: 9245783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation.
    Horsnell WG; Steel GJ; Morgan A
    Biochemistry; 2002 Apr; 41(16):5230-5. PubMed ID: 11955072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion.
    Seals DF; Eitzen G; Margolis N; Wickner WT; Price A
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9402-7. PubMed ID: 10944212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones.
    Mima J; Hickey CM; Xu H; Jun Y; Wickner W
    EMBO J; 2008 Aug; 27(15):2031-42. PubMed ID: 18650938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking.
    Sato TK; Darsow T; Emr SD
    Mol Cell Biol; 1998 Sep; 18(9):5308-19. PubMed ID: 9710615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins.
    Cao X; Ballew N; Barlowe C
    EMBO J; 1998 Apr; 17(8):2156-65. PubMed ID: 9545229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion.
    Xu H; Jun Y; Thompson J; Yates J; Wickner W
    EMBO J; 2010 Jun; 29(12):1948-60. PubMed ID: 20473271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutual control of membrane fission and fusion proteins.
    Peters C; Baars TL; Bühler S; Mayer A
    Cell; 2004 Nov; 119(5):667-78. PubMed ID: 15550248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of SNAREs with ArfGAPs precedes recruitment of Sec18p/NSF.
    Schindler C; Spang A
    Mol Biol Cell; 2007 Aug; 18(8):2852-63. PubMed ID: 17522384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins.
    Barlowe C
    J Cell Biol; 1997 Dec; 139(5):1097-108. PubMed ID: 9382859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic.
    Lupashin VV; Pokrovskaya ID; McNew JA; Waters MG
    Mol Biol Cell; 1997 Dec; 8(12):2659-76. PubMed ID: 9398683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defining the functions of trans-SNARE pairs.
    Ungermann C; Sato K; Wickner W
    Nature; 1998 Dec; 396(6711):543-8. PubMed ID: 9859990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion.
    Wang L; Merz AJ; Collins KM; Wickner W
    J Cell Biol; 2003 Feb; 160(3):365-74. PubMed ID: 12566429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole.
    Fischer von Mollard G; Stevens TH
    Mol Biol Cell; 1999 Jun; 10(6):1719-32. PubMed ID: 10359592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.