These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9657554)

  • 41. Effects of static compression with different loading magnitudes and durations on the intervertebral disc: an in vivo rat-tail study.
    Lai A; Chow DH; Siu SW; Leung SS; Lau EF; Tang FH; Pope MH
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2721-7. PubMed ID: 19050577
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model.
    Barbir A; Godburn KE; Michalek AJ; Lai A; Monsey RD; Iatridis JC
    Spine (Phila Pa 1976); 2011 Apr; 36(8):607-14. PubMed ID: 20736890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model.
    Ching CT; Chow DH; Yao FY; Holmes AD
    Med Eng Phys; 2004 Sep; 26(7):587-94. PubMed ID: 15271286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of compressive loading on biomechanical properties of disc and peripheral tissue in a rat tail model.
    Nakamura T; Iribe T; Asou Y; Miyairi H; Ikegami K; Takakuda K
    Eur Spine J; 2009 Nov; 18(11):1595-603. PubMed ID: 19557442
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The in-vivo effect of torque on growth in caudal vertebrae.
    Rizza R; Liu XC; Thometz J
    Stud Health Technol Inform; 2012; 176():209-12. PubMed ID: 22744492
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    J Bone Joint Surg Am; 2002 Oct; 84(10):1842-8. PubMed ID: 12377917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic Effects of Angulation, Compression, and Reduced Mobility on Annulus Fibrosis in a Model of Altered Mechanical Environment in Scoliosis.
    Stokes IA; McBride CA; Aronsson DD; Roughley PJ
    Spine Deform; 2013 May; 1(3):161-170. PubMed ID: 27927288
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical modulation of vertebral and tibial growth: diurnal versus full-time loading.
    Stokes IA; Gwadera J; Dimock A; Aronsson DD
    Stud Health Technol Inform; 2002; 91():97-100. PubMed ID: 15457702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
    MacLean JJ; Owen JP; Iatridis JC
    J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitivity of multi-parametric MRI to the compressive state of the isolated intervertebral discs.
    Manac'h YG; Périé D; Gilbert G; Beaudoin G
    Magn Reson Imaging; 2013 Jan; 31(1):36-43. PubMed ID: 22902468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Static and dynamic compression application and removal on the intervertebral discs of growing rats.
    Ménard AL; Grimard G; Massol E; Londono I; Moldovan F; Villemure I
    J Orthop Res; 2016 Feb; 34(2):290-8. PubMed ID: 26213189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of growth modulation on the effective permeability of the vertebral end plate. A porcine experimental scoliosis model.
    Accadbled F; Laffosse JM; Odent T; Gomez-Brouchet A; Sales de Gauzy J; Swider P
    Clin Biomech (Bristol); 2011 May; 26(4):337-42. PubMed ID: 21146266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The internal pressure and stress environment of the scoliotic intervertebral disc--a review.
    Meir A; McNally DS; Fairbank JC; Jones D; Urban JP
    Proc Inst Mech Eng H; 2008 Feb; 222(2):209-19. PubMed ID: 18441756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D Visualization of Vertebral Growth Plates and Disc: The Effects of Growth Modulation.
    Newton PO; Glaser DA; Doan JD; Farnsworth CL
    Spine Deform; 2013 Sep; 1(5):313-320. PubMed ID: 27927386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The analysis of axisymmetric viscoelasticity, time-dependent recovery, and hydration in rat tail intervertebral discs by radial compression test.
    Lin LC; Hedman TP; Wang SJ; Huoh M; Chang SY
    J Appl Biomech; 2009 May; 25(2):133-9. PubMed ID: 19483257
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Removable Precision Device for In-Vivo Mechanical Compression of Rat Tail Intervertebral Discs.
    Stinnett-Donnelly JM; MacLean JJ; Iatridis JC
    J Med Device; 2007 Mar; 1(1):56-61. PubMed ID: 38529339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contributions of Remodeling and Asymmetrical Growth to Vertebral Wedging in a Scoliosis Model.
    Aronsson DD; Stokes IA; McBride CA
    Spine Deform; 2013 Jan; 1(1):2-9. PubMed ID: 27927317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical spinal growth modulation and progressive adolescent scoliosis--a test of the 'vicious cycle' pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE.
    Stokes IA; Burwell RG; Dangerfield PH;
    Scoliosis; 2006 Oct; 1():16. PubMed ID: 17049077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantification of mechanical behavior of rat tail under compression.
    Moore KD; Wu JZ; Krajnak K; Warren C; Dong RG
    Biomed Mater Eng; 2024; 35(4):337-349. PubMed ID: 38758990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of macrophage elastase (MMP12) in rat tail intervertebral disc and growth plate after asymmetric loading.
    Vasiliadis ES; Kaspiris A; Grivas TB; Khaldi L; Lamprou M; Pneumaticos SG; Nikolopoulos K; Korres DS; Papadimitriou E
    Bone Joint Res; 2014 Sep; 3(9):273-9. PubMed ID: 25224255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.