These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9658028)

  • 41. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters.
    Mink JW; Thach WT
    J Neurophysiol; 1991 Feb; 65(2):301-29. PubMed ID: 2016643
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1228-70. PubMed ID: 2934519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linear encoding of muscle activity in primary motor cortex and cerebellum.
    Townsend BR; Paninski L; Lemon RN
    J Neurophysiol; 2006 Nov; 96(5):2578-92. PubMed ID: 16790591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visuomotor processing as reflected in the directional discharge of premotor and primary motor cortex neurons.
    Johnson MT; Coltz JD; Hagen MC; Ebner TJ
    J Neurophysiol; 1999 Feb; 81(2):875-94. PubMed ID: 10036299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey.
    Alexander GE; Crutcher MD
    J Neurophysiol; 1990 Jul; 64(1):164-78. PubMed ID: 2388063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements.
    Prud'homme MJ; Kalaska JF
    J Neurophysiol; 1994 Nov; 72(5):2280-301. PubMed ID: 7884459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic correspondence between Purkinje cell discharge and forelimb muscle activity during reaching.
    Holdefer RN; Miller LE
    Brain Res; 2009 Oct; 1295():67-75. PubMed ID: 19647722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex.
    Rho MJ; Lavoie S; Drew T
    J Neurophysiol; 1999 May; 81(5):2297-315. PubMed ID: 10322067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of neural responses in primary motor cortex to transient and continuous loads during posture.
    Herter TM; Korbel T; Scott SH
    J Neurophysiol; 2009 Jan; 101(1):150-63. PubMed ID: 19005005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Response of rubromotoneuronal cells identified by spike-triggered averaging of EMG activity in awake monkeys.
    Cheney PD
    Neurosci Lett; 1980 Apr; 17(1-2):137-42. PubMed ID: 6820481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Task-related coding of stimulus and response in cat red nucleus.
    Martin JH; Ghez C
    Exp Brain Res; 1991; 85(2):373-88. PubMed ID: 1893986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.
    Schieber MH; Rivlis G
    J Neurophysiol; 2007 Jan; 97(1):70-82. PubMed ID: 17035361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison between red nucleus and precentral neurons during learned movements in the monkey.
    Otero JB
    Brain Res; 1976 Jan; 101(1):37-46. PubMed ID: 811330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ballistic reactions under different motor sets.
    Castellote JM; Valls-Solé J; Sanegre MT
    Exp Brain Res; 2004 Sep; 158(1):35-42. PubMed ID: 15007585
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.
    Yamamoto K; Kawato M; Kotosaka S; Kitazawa S
    J Neurophysiol; 2007 Feb; 97(2):1588-99. PubMed ID: 17079350
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Motor cortical activity during drawing movements: population representation during spiral tracing.
    Moran DW; Schwartz AB
    J Neurophysiol; 1999 Nov; 82(5):2693-704. PubMed ID: 10561438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Physiol; 2006 Jun; 573(Pt 3):843-55. PubMed ID: 16581867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Participation of primary motor cortical neurons in a distributed network during maze solution: representation of spatial parameters and time-course comparison with parietal area 7a.
    Crowe DA; Chafee MV; Averbeck BB; Georgopoulos AP
    Exp Brain Res; 2004 Sep; 158(1):28-34. PubMed ID: 15042265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive plasticity in primate spinal stretch reflex: initial development.
    Wolpaw JR; Braitman DJ; Seegal RF
    J Neurophysiol; 1983 Dec; 50(6):1296-311. PubMed ID: 6663327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.