BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 9658044)

  • 1. Responses of deep entorhinal cortex are epileptiform in an electrogenic rat model of chronic temporal lobe epilepsy.
    Fountain NB; Bear J; Bertram EH; Lothman EW
    J Neurophysiol; 1998 Jul; 80(1):230-40. PubMed ID: 9658044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats.
    Bear J; Fountain NB; Lothman EW
    J Neurophysiol; 1996 Nov; 76(5):2928-40. PubMed ID: 8930245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profound disturbances of pre- and postsynaptic GABAB-receptor-mediated processes in region CA1 in a chronic model of temporal lobe epilepsy.
    Mangan PS; Lothman EW
    J Neurophysiol; 1996 Aug; 76(2):1282-96. PubMed ID: 8871236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in inhibitory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy.
    Mangan PS; Rempe DA; Lothman EW
    J Neurophysiol; 1995 Aug; 74(2):829-40. PubMed ID: 7472386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in excitatory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy.
    Lothman EW; Rempe DA; Mangan PS
    J Neurophysiol; 1995 Aug; 74(2):841-8. PubMed ID: 7472387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals.
    Rempe DA; Bertram EH; Williamson JM; Lothman EW
    J Neurophysiol; 1997 Sep; 78(3):1504-15. PubMed ID: 9310439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperpolarizing and depolarizing GABAA receptor-mediated dendritic inhibition in area CA1 of the rat hippocampus.
    Lambert NA; Borroni AM; Grover LM; Teyler TJ
    J Neurophysiol; 1991 Nov; 66(5):1538-48. PubMed ID: 1684989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy.
    Bekenstein JW; Lothman EW
    Science; 1993 Jan; 259(5091):97-100. PubMed ID: 8093417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shortened-duration GABA(A) receptor-mediated synaptic potentials underlie enhanced CA1 excitability in a chronic model of temporal lobe epilepsy.
    Mangan PS; Bertram EH
    Neuroscience; 1997 Oct; 80(4):1101-11. PubMed ID: 9284063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampal and entorhinal cortex high-frequency oscillations (100--500 Hz) in human epileptic brain and in kainic acid--treated rats with chronic seizures.
    Bragin A; Engel J; Wilson CL; Fried I; Mathern GW
    Epilepsia; 1999 Feb; 40(2):127-37. PubMed ID: 9952257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus.
    Isokawa M
    J Neurophysiol; 1996 May; 75(5):1901-8. PubMed ID: 8734589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity and excitability of deep-layer entorhinal cortical neurons in a model of temporal lobe epilepsy.
    Pilli J; Abbasi S; Richardson M; Kumar SS
    J Neurophysiol; 2012 Sep; 108(6):1724-38. PubMed ID: 22745466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAB autoreceptors mediate activity-dependent disinhibition and enhance signal transmission in the dentate gyrus.
    Mott DD; Xie CW; Wilson WA; Swartzwelder HS; Lewis DV
    J Neurophysiol; 1993 Mar; 69(3):674-91. PubMed ID: 8096539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of neuronal migration disorders in neocortical structures. II. Intracellular in vitro recordings.
    Luhmann HJ; Karpuk N; Qü M; Zilles K
    J Neurophysiol; 1998 Jul; 80(1):92-102. PubMed ID: 9658031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy.
    Tolner EA; Frahm C; Metzger R; Gorter JA; Witte OW; Lopes da Silva FH; Heinemann U
    Neurobiol Dis; 2007 May; 26(2):419-38. PubMed ID: 17350275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.
    Kobayashi M; Buckmaster PS
    J Neurosci; 2003 Mar; 23(6):2440-52. PubMed ID: 12657704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA receptor-mediated post-synaptic potentials in the retrohippocampal cortices: regional, laminar and cellular comparisons.
    Funahashi M; Stewart M
    Brain Res; 1998 Mar; 787(1):19-33. PubMed ID: 9518538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic inputs to stellate cells in the ventral cochlear nucleus.
    Ferragamo MJ; Golding NL; Oertel D
    J Neurophysiol; 1998 Jan; 79(1):51-63. PubMed ID: 9425176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy.
    Kumar SS; Buckmaster PS
    J Neurosci; 2006 Apr; 26(17):4613-23. PubMed ID: 16641241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus.
    Rafiq A; Zhang YF; DeLorenzo RJ; Coulter DA
    J Neurophysiol; 1995 Nov; 74(5):2028-42. PubMed ID: 8592194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.