BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 9658160)

  • 1. Formation and turnover of NSF- and SNAP-containing "fusion" complexes occur on undocked, clathrin-coated vesicle-derived membranes.
    Swanton E; Sheehan J; Bishop N; High S; Woodman P
    Mol Biol Cell; 1998 Jul; 9(7):1633-47. PubMed ID: 9658160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of the fusion protein NSF with clathrin-coated vesicle membranes.
    Steel GJ; Tagaya M; Woodman PG
    EMBO J; 1996 Feb; 15(4):745-52. PubMed ID: 8631296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion.
    Pellegrini LL; O'Connor V; Lottspeich F; Betz H
    EMBO J; 1995 Oct; 14(19):4705-13. PubMed ID: 7588600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of SNAP/SNARE complexes on the ATPase of NSF.
    Matveeva E; Whiteheart SW
    FEBS Lett; 1998 Sep; 435(2-3):211-4. PubMed ID: 9762911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of SNAP receptors in rat adipose cell membrane fractions and in SNARE complexes co-immunoprecipitated with epitope-tagged N-ethylmaleimide-sensitive fusion protein.
    Timmers KI; Clark AE; Omatsu-Kanbe M; Whiteheart SW; Bennett MK; Holman GD; Cushman SW
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):429-36. PubMed ID: 8973549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of N-ethylmaleimide sensitive fusion (NSF) protein and soluble NSF attachment proteins-alpha and -gamma with glucose transporter-4-containing vesicles in primary rat adipocytes.
    Mastick CC; Falick AL
    Endocrinology; 1997 Jun; 138(6):2391-7. PubMed ID: 9165027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity of Golgi transport vesicles depends on the presence of the N-ethylmaleimide-sensitive factor (NSF) and a soluble NSF attachment protein (alpha SNAP) during vesicle formation.
    Wattenberg BW; Raub TJ; Hiebsch RR; Weidman PJ
    J Cell Biol; 1992 Sep; 118(6):1321-32. PubMed ID: 1522110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles.
    Babcock M; Macleod GT; Leither J; Pallanck L
    J Neurosci; 2004 Apr; 24(16):3964-73. PubMed ID: 15102912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of vesicular membrane-bound alpha-SNAP and NSF in adrenal chromaffin cells.
    Banaschewski C; Höhne-Zell B; Ovtscharoff W; Gratzl M
    Biochemistry; 1998 Nov; 37(47):16719-27. PubMed ID: 9843441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking.
    Tolar LA; Pallanck L
    J Neurosci; 1998 Dec; 18(24):10250-6. PubMed ID: 9852562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.
    Söllner T; Bennett MK; Whiteheart SW; Scheller RH; Rothman JE
    Cell; 1993 Nov; 75(3):409-18. PubMed ID: 8221884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex.
    Subramaniam VN; Loh E; Hong W
    J Biol Chem; 1997 Oct; 272(41):25441-4. PubMed ID: 9325254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation.
    Horsnell WG; Steel GJ; Morgan A
    Biochemistry; 2002 Apr; 41(16):5230-5. PubMed ID: 11955072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homotypic vacuolar fusion mediated by t- and v-SNAREs.
    Nichols BJ; Ungermann C; Pelham HR; Wickner WT; Haas A
    Nature; 1997 May; 387(6629):199-202. PubMed ID: 9144293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mass, stoichiometry, and assembly of 20 S particles.
    Wimmer C; Hohl TM; Hughes CA; Müller SA; Söllner TH; Engel A; Rothman JE
    J Biol Chem; 2001 Aug; 276(31):29091-7. PubMed ID: 11395481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAREs and NSF in targeted membrane fusion.
    Hay JC; Scheller RH
    Curr Opin Cell Biol; 1997 Aug; 9(4):505-12. PubMed ID: 9261050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disassembly of membrane-associated NSF 20S complexes is slow relative to vesicle fusion and is Ca(2+)-independent.
    Swanton E; Bishop N; Sheehan J; High S; Woodman P
    J Cell Sci; 2000 May; 113 ( Pt 10)():1783-91. PubMed ID: 10769209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNAREpins are functionally resistant to disruption by NSF and alphaSNAP.
    Weber T; Parlati F; McNew JA; Johnston RJ; Westermann B; Söllner TH; Rothman JE
    J Cell Biol; 2000 May; 149(5):1063-72. PubMed ID: 10831610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNAREs and membrane fusion in the Golgi apparatus.
    Nichols BJ; Pelham HR
    Biochim Biophys Acta; 1998 Aug; 1404(1-2):9-31. PubMed ID: 9714710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.