These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9659385)

  • 41. Structural/functional assignment of unknown bacteriophage T4 proteins by iterative database searches.
    Kawabata T; Arisaka F; Nishikawa K
    Gene; 2000 Dec; 259(1-2):223-33. PubMed ID: 11163980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A component of the side tail fiber of Escherichia coli bacteriophage lambda can functionally replace the receptor-recognizing part of a long tail fiber protein of the unrelated bacteriophage T4.
    Montag D; Schwarz H; Henning U
    J Bacteriol; 1989 Aug; 171(8):4378-84. PubMed ID: 2526805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme.
    Baldwin EP; Hajiseyedjavadi O; Baase WA; Matthews BW
    Science; 1993 Dec; 262(5140):1715-8. PubMed ID: 8259514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacteriophage T4 resistance to lysis-inhibition collapse.
    Abedon ST
    Genet Res; 1999 Aug; 74(1):1-11. PubMed ID: 10505404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The pK
    Brockerman JA; Okon M; Withers SG; McIntosh LP
    Protein Sci; 2019 Mar; 28(3):620-632. PubMed ID: 30537432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced Sampling of Protein Conformational Transitions via Dynamically Optimized Collective Variables.
    Brotzakis ZF; Parrinello M
    J Chem Theory Comput; 2019 Feb; 15(2):1393-1398. PubMed ID: 30557019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A relationship between protein stability and protein function.
    Shoichet BK; Baase WA; Kuroki R; Matthews BW
    Proc Natl Acad Sci U S A; 1995 Jan; 92(2):452-6. PubMed ID: 7831309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Delineation of an evolutionary salvage pathway by compensatory mutations of a defective lysozyme.
    Jucovic M; Poteete AR
    Protein Sci; 1998 Oct; 7(10):2200-9. PubMed ID: 9792108
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The introduction of strain and its effects on the structure and stability of T4 lysozyme.
    Liu R; Baase WA; Matthews BW
    J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence.
    Varadarajan R; Nagarajaram HA; Ramakrishnan C
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13908-13. PubMed ID: 8943034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of medium- and long-range interactions to the stability of the mutants of T4 lysozyme.
    Gromiha MM; Thangakani AM
    Prep Biochem Biotechnol; 2001 Aug; 31(3):217-27. PubMed ID: 11513088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation at atomic resolution of the role of strain in destabilizing the temperature-sensitive T4 lysozyme mutant Arg 96 --> His.
    Mooers BH; Tronrud DE; Matthews BW
    Protein Sci; 2009 May; 18(5):863-70. PubMed ID: 19384984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Transmission of amber mutants of bacteriophage T4. III. Thermostability of the replication of amber mutants in cells of a non-permissive host is typical for the majority of phage tail genes].
    Shalnene VIu; Nivinskas RG
    Genetika; 1987 Apr; 23(4):622-9. PubMed ID: 2953651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lysozyme activity of bacteriophage T4 ghosts.
    Szewczyk B; Skórko R
    Biochim Biophys Acta; 1981 Nov; 662(1):131-7. PubMed ID: 7306554
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme.
    Kuroki R; Weaver LH; Matthews BW
    Science; 1993 Dec; 262(5142):2030-3. PubMed ID: 8266098
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR.
    Goto NK; Skrynnikov NR; Dahlquist FW; Kay LE
    J Mol Biol; 2001 May; 308(4):745-64. PubMed ID: 11350172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural correlates of the temperature sensitive phenotype derived from saturation mutagenesis studies of CcdB.
    Bajaj K; Dewan PC; Chakrabarti P; Goswami D; Barua B; Baliga C; Varadarajan R
    Biochemistry; 2008 Dec; 47(49):12964-73. PubMed ID: 19006334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functions involved in bacteriophage P2-induced host cell lysis and identification of a new tail gene.
    Ziermann R; Bartlett B; Calendar R; Christie GE
    J Bacteriol; 1994 Aug; 176(16):4974-84. PubMed ID: 8051010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CD and NMR determination of the solution structure of a peptide corresponding to T4 lysozyme residues 38-51.
    Najbar LV; Craik DJ; Wade JD; Lin F; McLeish MJ
    Biochim Biophys Acta; 1995 Jul; 1250(2):163-70. PubMed ID: 7632721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.