These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9659891)

  • 1. Sources of error in intra-arterial pressure measurements across a stenosis.
    McWilliams RG; Robertson I; Smye SW; Wijesinghe L; Kessel D
    Eur J Vasc Endovasc Surg; 1998 Jun; 15(6):535-40. PubMed ID: 9659891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Validation of Patient-Specific Pressure Gradient Calculations for Iliac Artery Stenosis Severity Assessment.
    Heinen SGH; van den Heuvel DAF; Huberts W; de Boer SW; van de Vosse FN; Delhaas T; de Vries JPM
    J Am Heart Assoc; 2017 Dec; 6(12):. PubMed ID: 29275367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Doppler measurement of pressure gradients across peripheral model arterial stenosis.
    Weber G; Strauss AL; Rieger H; Scheffler A; Eisenhoffer J
    J Vasc Surg; 1992 Jul; 16(1):10-6. PubMed ID: 1619708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive assessment of pressure gradients across iliac artery stenoses: duplex and catheter correlative study.
    Strauss AL; Roth FJ; Rieger H
    J Ultrasound Med; 1993 Jan; 12(1):17-22. PubMed ID: 8455216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire.
    De Bruyne B; Pijls NH; Paulus WJ; Vantrimpont PJ; Sys SU; Heyndrickx GR
    J Am Coll Cardiol; 1993 Jul; 22(1):119-26. PubMed ID: 8509531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of stenosis geometry on the Doppler-catheter gradient relation in vitro: a manifestation of pressure recovery.
    Baumgartner H; Schima H; Tulzer G; Kühn P
    J Am Coll Cardiol; 1993 Mar; 21(4):1018-25. PubMed ID: 8450150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of the simplified Bernoulli relationship in measuring pressure gradients across stenosis.
    Rieu R; Pelissier R; Isaaz K
    Int Angiol; 1989; 8(4):210-5. PubMed ID: 2699483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of geometry-based methods and intra-arterial pressure measurements to assess the hemodynamic significance of equivocal iliac artery stenoses.
    Heinen SG; Huberts W; van den Heuvel DA; van de Vosse FN; de Vries JP; Delhaas T
    Vascular; 2019 Apr; 27(2):119-127. PubMed ID: 30305011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Why is the Doppler pressure gradient higher than the one measured by catheter?].
    Wéber G; Strauss AL; Horst R; Andreas S; Eisenhoffer JS
    Orv Hetil; 1992 Aug; 133(31):1953-8. PubMed ID: 1495805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic significance assessment of equivocal iliac artery stenoses by comparing duplex ultrasonography with intra-arterial pressure measurements.
    Heinen SG; de Boer SW; van den Heuvel DA; Huberts W; Dekker P; van de Vosse FN; Delhaas T; de Vries JP
    J Cardiovasc Surg (Torino); 2018 Feb; 59(1):37-44. PubMed ID: 28849900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pressure-recording guidewire for measuring arterial transstenotic gradients: in vivo validation.
    Abildgaard A; Kløw NE
    Acad Radiol; 1995 Jan; 2(1):53-60. PubMed ID: 9419525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow in a catheterized curved artery with stenosis.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1999 Jan; 32(1):49-61. PubMed ID: 10050951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of physiological and simple pulsatile flows through stenosed arteries.
    Zendehbudi GR; Moayeri MS
    J Biomech; 1999 Sep; 32(9):959-65. PubMed ID: 10460133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doppler ophthalmic blood pressure measurement in the hemodynamic evaluation of occlusive carotid artery disease.
    Strauss AL; Rieger H; Roth FJ; Schoop W
    Stroke; 1989 Aug; 20(8):1012-5. PubMed ID: 2667198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic evaluation of arterial stenoses by computer simulation.
    Kandarpa K; Davids N; Gardiner GA; Harrington DP; Selwyn A; Levin DC
    Invest Radiol; 1987 May; 22(5):393-403. PubMed ID: 3597007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of arterial flow with applications to arterial and aortic stenoses.
    Stergiopulos N; Young DF; Rogge TR
    J Biomech; 1992 Dec; 25(12):1477-88. PubMed ID: 1491023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The area of the pressure-flow loop for assessment of arterial stenosis: a new index.
    Ovadia-Blechman Z; Einav S; Zaretsky U; Castel D; Toledo E; Eldar M
    Technol Health Care; 2002; 10(1):39-56. PubMed ID: 11847447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How can the assessment of the hemodynamic significance of aortoiliac arterial stenosis by duplex scanning be improved? A comparative study with intraarterial pressure measurement.
    Legemate DA; Teeuwen C; Hoeneveld H; Eikelboom BC
    J Vasc Surg; 1993 Apr; 17(4):676-84. PubMed ID: 8464085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty.
    Pijls NH; van Son JA; Kirkeeide RL; De Bruyne B; Gould KL
    Circulation; 1993 Apr; 87(4):1354-67. PubMed ID: 8462157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and comparison of pressure gradients and ratios for predicting iliac stenosis.
    Archie JP
    Ann Vasc Surg; 1994 May; 8(3):271-80. PubMed ID: 8043361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.