BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9659937)

  • 21. Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation.
    Hardin J
    Dev Biol; 1989 Dec; 136(2):430-45. PubMed ID: 2583371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation.
    Beane WS; Gross JM; McClay DR
    Dev Biol; 2006 Apr; 292(1):213-25. PubMed ID: 16458878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target recognition by the archenteron during sea urchin gastrulation.
    Hardin J; McClay DR
    Dev Biol; 1990 Nov; 142(1):86-102. PubMed ID: 2227104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
    Yajima M
    Dev Biol; 2007 Jul; 307(2):272-81. PubMed ID: 17540361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos.
    Hardin J; Illingworth CA
    Dev Dyn; 2006 Nov; 235(11):3121-31. PubMed ID: 16958110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gastrulation in the sea urchin, Strongylocentrotus purpuratus, is disrupted by the small laminin peptides YIGSR and IKVAV.
    Hawkins RL; Fan J; Hille MB
    Cell Adhes Commun; 1995 May; 3(2):163-77. PubMed ID: 7583008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gastrulation in the sea urchin.
    McClay DR; Warner J; Martik M; Miranda E; Slota L
    Curr Top Dev Biol; 2020; 136():195-218. PubMed ID: 31959288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae.
    Katow H; Yaguchi S; Kiyomoto M; Washio M
    Mech Dev; 2004 Apr; 121(4):325-37. PubMed ID: 15110043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells.
    Ettensohn CA
    Dev Biol; 1985 Dec; 112(2):383-90. PubMed ID: 4076547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo.
    Miller RN; Dalamagas DG; Kingsley PD; Ettensohn CA
    Mech Dev; 1996 Nov; 60(1):3-12. PubMed ID: 9025057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Involution during Sea Urchin Gastrulation Using Two-Photon Excited Photorelease and Confocal Microscopy.
    Piston DW; Summers RG; Knobel SM; Morrill JB
    Microsc Microanal; 1998 Jul; 4(4):404-414. PubMed ID: 9882716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial expression of a forkhead homologue in the sea urchin embryo.
    Harada Y; Akasaka K; Shimada H; Peterson KJ; Davidson EH; Satoh N
    Mech Dev; 1996 Dec; 60(2):163-73. PubMed ID: 9025069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron.
    Long JT; Irwin L; Enomoto AC; Grow Z; Ranck J; Peeler MT
    Genesis; 2015 Dec; 53(12):762-9. PubMed ID: 26297876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells.
    Tamboline CR; Burke RD
    J Exp Zool; 1992 Apr; 262(1):51-60. PubMed ID: 1583452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development.
    Yajima M
    Evol Dev; 2007; 9(3):257-66. PubMed ID: 17501749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.