These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9659986)

  • 1. Arousal mediates relations among medial paw preference, lateral paw preference, and spatial preference in the mouse.
    Rogers TT; Bulman-Fleming MB
    Behav Brain Res; 1998 Jun; 93(1-2):51-62. PubMed ID: 9659986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of early experience on callosal development and functional lateralization in pigmented BALB/c mice.
    Bulman-Fleming B; Wainwright PE; Collins RL
    Behav Brain Res; 1992 Sep; 50(1-2):31-42. PubMed ID: 1449648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paw preference, rotation, and dopamine function in Collins HI and LO mouse strains.
    Nielsen DM; Visker KE; Cunningham MJ; Keller RW; Glick SD; Carlson JN
    Physiol Behav; 1997 Apr; 61(4):525-35. PubMed ID: 9108571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesions of the medial or lateral perforant path have different effects on hippocampal contributions to place learning and on fear conditioning to context.
    Ferbinteanu J; Holsinger RM; McDonald RJ
    Behav Brain Res; 1999 May; 101(1):65-84. PubMed ID: 10342401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of motor bias in the domestic dog, Canis familiaris.
    Wells DL; Hepper PG; Milligan ADS; Barnard S
    Behav Processes; 2018 Apr; 149():1-7. PubMed ID: 29391215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak or missing paw lateralization in a mouse strain (I/LnJ) with congenital absence of the corpus callosum.
    Gruber D; Waanders R; Collins RL; Wolfer DP; Lipp HP
    Behav Brain Res; 1991 Dec; 46(1):9-16. PubMed ID: 1786116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of two measures of paw preference in a large population of inbred mice.
    Waters NS; Denenberg VH
    Behav Brain Res; 1994 Aug; 63(2):195-204. PubMed ID: 7999303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paw preference and intra-/infrapyramidal mossy fibers in the hippocampus of the mouse.
    Lipp HP; Collins RL; Hausheer-Zarmakupi Z; Leisinger-Trigona MC; Crusio WE; Nosten-Bertrand M; Signore P; Schwegler H; Wolfer DP
    Behav Genet; 1996 Jul; 26(4):379-90. PubMed ID: 8771898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of total and partial callosal agenesis on the development of paw preference performance in the BALB/cCF mouse.
    Schmidt SL; Manhães AC; de Moraes VZ
    Brain Res; 1991 Apr; 545(1-2):123-30. PubMed ID: 1860038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Callosal agenesis affects consistency of laterality in a paw preference task in BALB/cCF mice.
    Manhães AC; Schmidt SL; Filgueiras CC
    Behav Brain Res; 2005 Apr; 159(1):43-9. PubMed ID: 15794996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relational memory for object identity and spatial location in rats with lesions of perirhinal cortex, amygdala and hippocampus.
    Moses SN; Cole C; Ryan JD
    Brain Res Bull; 2005 May; 65(6):501-12. PubMed ID: 15862922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between paw preference strength and noise phobia in Canis familiaris.
    Branson NJ; Rogers LJ
    J Comp Psychol; 2006 Aug; 120(3):176-183. PubMed ID: 16893254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variation in paw preference (handedness) in the mouse.
    Biddle FG; Coffaro CM; Ziehr JE; Eales BA
    Genome; 1993 Oct; 36(5):935-43. PubMed ID: 8270204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivalent performance in the water maze by rats with an inborn high or low learning capacity in a shuttle box paradigm.
    Arolfo MP; Tinari RJ; Ramírez OA
    Physiol Behav; 1996 Jan; 59(1):209-12. PubMed ID: 8848485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Reversal of "handedness" in callosotomized rats].
    Ioffe ME; Mikliaeva EI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1984; 34(3):478-86. PubMed ID: 6475299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviour laterality in male rats: influence of practice and stress.
    Santín LJ; Begega A; Rubio S; Arias JL
    Physiol Behav; 1996 Jul; 60(1):161-4. PubMed ID: 8804657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateralized functional components of spatial cognition in the avian hippocampal formation: evidence from single-unit recordings in freely moving homing pigeons.
    Siegel JJ; Nitz D; Bingman VP
    Hippocampus; 2006; 16(2):125-40. PubMed ID: 16281290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision influences paw-preference in mice.
    Barnéoud P; Bronchti G; Van der Loos H
    Behav Brain Res; 1994 Jun; 62(2):157-64. PubMed ID: 7945966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term and long-term memory deficits in handedness learning in mice with absent corpus callosum and reduced hippocampal commissure.
    Ribeiro AS; Eales BA; Biddle FG
    Behav Brain Res; 2013 May; 245():145-51. PubMed ID: 23454853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of spatial learning abilities of mice in a new circular maze.
    Koopmans G; Blokland A; van Nieuwenhuijzen P; Prickaerts J
    Physiol Behav; 2003 Sep; 79(4-5):683-93. PubMed ID: 12954410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.