These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9660098)

  • 41. The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness.
    Monti JM
    Sleep Med Rev; 2010 Oct; 14(5):307-17. PubMed ID: 20153669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PKC in rat dorsal raphe nucleus plays a key role in sleep-wake regulation.
    Li SJ; Cui SY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Cui XY; Zhang YH
    Prog Neuropsychopharmacol Biol Psychiatry; 2015 Dec; 63():47-53. PubMed ID: 25970525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discharge properties of presumed cholinergic and noncholinergic laterodorsal tegmental neurons related to cortical activation in non-anesthetized mice.
    Sakai K
    Neuroscience; 2012 Nov; 224():172-90. PubMed ID: 22917614
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acetylcholine and glutamate release during sleep-wakefulness in the pedunculopontine tegmental nucleus and norepinephrine changes regulated by nitric oxide.
    Kodama T; Honda Y
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):109-11. PubMed ID: 10459664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Nitric oxide as a regulatory factor in sleep-wakefulness mechanisms].
    Tokunaga Y; Imai S; Matsumura H; Maeda T
    Nihon Rinsho; 1998 Feb; 56(2):308-11. PubMed ID: 9503827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in the serotonergic system during the sleep-wake cycle: simultaneous polygraphic and voltammetric recordings in hypothalamus using a telemetry system.
    Imeri L; De Simoni MG; Giglio R; Clavenna A; Mancia M
    Neuroscience; 1994 Jan; 58(2):353-8. PubMed ID: 7512239
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Symmetrical serotonin release during asymmetrical slow-wave sleep: implications for the neurochemistry of sleep-waking states.
    Lapierre JL; Kosenko PO; Kodama T; Peever JH; Mukhametov LM; Lyamin OI; Siegel JM
    J Neurosci; 2013 Feb; 33(6):2555-61. PubMed ID: 23392683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Major neurotransmitters involved in the regulation of sleep-wake cycle].
    Franco-Pérez J; Ballesteros-Zebadúa P; Custodio V; Paz C
    Rev Invest Clin; 2012; 64(2):182-91. PubMed ID: 22991780
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice.
    Sakai K
    Neuroscience; 2011 May; 182():144-61. PubMed ID: 21396987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of the 5-HT₆ receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle.
    Monti JM; Jantos H
    Behav Brain Res; 2011 Jan; 216(1):381-8. PubMed ID: 20732355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Melanin-concentrating hormone control of sleep-wake behavior.
    Monti JM; Torterolo P; Lagos P
    Sleep Med Rev; 2013 Aug; 17(4):293-8. PubMed ID: 23477948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activity of serotonin-containing neurons in nucleus centralis superior of freely moving cats.
    Rasmussen K; Heym J; Jacobs BL
    Exp Neurol; 1984 Feb; 83(2):302-17. PubMed ID: 6692870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The regulation of NO on sleep-wakefulness in rats].
    Zhang WH; Sun BY; Lin YL
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2000 Nov; 16(4):339-42. PubMed ID: 11236695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sleep-wake architecture in mouse models for Down syndrome.
    Colas D; London J; Gharib A; Cespuglio R; Sarda N
    Neurobiol Dis; 2004 Jul; 16(2):291-9. PubMed ID: 15193286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From waking to sleeping: neuronal and chemical substrates.
    Jones BE
    Trends Pharmacol Sci; 2005 Nov; 26(11):578-86. PubMed ID: 16183137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Internal temperature variations during the sleep-wake cycle in the rat.
    Roussel B; Dittmar A; Chouvet G
    Waking Sleeping; 1980; 4(1):63-75. PubMed ID: 7395196
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sleep alterations and brain regional changes of serotonin and its metabolite in rats exposed to ozone.
    Huitrón-Reséndiz S; Custodio-Ramírez V; Escalante-Membrillo C; González-Piña R; Paz C
    Neurosci Lett; 1994 Aug; 177(1-2):119-22. PubMed ID: 7529903
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computer analysis of cardiovascular changes during sleep-wake cycle in Sprague-Dawley rats.
    Lacombe J; Nosjean A; Meunier JM; Laguzzi R
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H217-22. PubMed ID: 3344812
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential pulse voltammetry: parallel peak 3 changes with vigilance states in raphe dorsalis and raphe magnus of chronic freely moving rats and evidence for a 5-HT contribution to these peaks after monoamine oxidase inhibitors.
    Crespi F; Jouvet M
    Brain Res; 1983 Aug; 272(2):263-8. PubMed ID: 6616202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.