These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 9660188)
1. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Lang DA; Mannesse ML; de Haas GH; Verheij HM; Dijkstra BW Eur J Biochem; 1998 Jun; 254(2):333-40. PubMed ID: 9660188 [TBL] [Abstract][Full Text] [Related]
2. Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane: biocatalytic, structural and modelling study. Luić M; Tomić S; Lescić I; Ljubović E; Sepac D; Sunjić V; Vitale L; Saenger W; Kojic-Prodić B Eur J Biochem; 2001 Jul; 268(14):3964-73. PubMed ID: 11453990 [TBL] [Abstract][Full Text] [Related]
3. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Kim KK; Song HK; Shin DH; Hwang KY; Suh SW Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073 [TBL] [Abstract][Full Text] [Related]
4. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Zandonella G; Stadler P; Haalck L; Spener F; Paltauf F; Hermetter A Eur J Biochem; 1999 May; 262(1):63-9. PubMed ID: 10231365 [TBL] [Abstract][Full Text] [Related]
5. Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol. Mezzetti A; Schrag JD; Cheong CS; Kazlauskas RJ Chem Biol; 2005 Apr; 12(4):427-37. PubMed ID: 15850979 [TBL] [Abstract][Full Text] [Related]
6. Combined X-ray diffraction and QM/MM study of the Burkholderia cepacia lipase-catalyzed secondary alcohol esterification. Luić M; Stefanić Z; Ceilinger I; Hodoscek M; Janezic D; Lenac T; Asler IL; Sepac D; Tomić S J Phys Chem B; 2008 Apr; 112(16):4876-83. PubMed ID: 18386861 [TBL] [Abstract][Full Text] [Related]
7. Phosphonate analogues of triacylglycerols are potent inhibitors of lipase. Mannesse ML; Boots JW; Dijkman R; Slotboom AJ; van der Hijden HT; Egmond MR; Verheij HM; de Haas GH Biochim Biophys Acta; 1995 Oct; 1259(1):56-64. PubMed ID: 7492616 [TBL] [Abstract][Full Text] [Related]
8. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Schulz T; Pleiss J; Schmid RD Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799 [TBL] [Abstract][Full Text] [Related]
9. Computer simulations of enantioselective ester hydrolyses catalyzed by Pseudomonas cepacia lipase. Tafi A; van Almsick A; Corelli F; Crusco M; Laumen KE; Schneider MP; Botta M J Org Chem; 2000 Jun; 65(12):3659-65. PubMed ID: 10864749 [TBL] [Abstract][Full Text] [Related]
10. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach. Guieysse D; Cortés J; Puech-Guenot S; Barbe S; Lafaquière V; Monsan P; Siméon T; André I; Remaud-Siméon M Chembiochem; 2008 May; 9(8):1308-17. PubMed ID: 18418817 [TBL] [Abstract][Full Text] [Related]
11. A quantitative model for predicting enzyme enantioselectivity: application to Burkholderia cepacia lipase and 3-(aryloxy)-1,2-propanediol derivatives. Tomić S; Kojić-Prodić B J Mol Graph Model; 2002 Dec; 21(3):241-52. PubMed ID: 12463642 [TBL] [Abstract][Full Text] [Related]
12. Remote interactions explain the unusual regioselectivity of lipase from Pseudomonas cepacia toward the secondary hydroxyl of 2'-deoxynucleosides. Lavandera I; Fernández S; Magdalena J; Ferrero M; Grewal H; Savile CK; Kazlauskas RJ; Gotor V Chembiochem; 2006 Apr; 7(4):693-8. PubMed ID: 16491501 [TBL] [Abstract][Full Text] [Related]
13. The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Egloff MP; Marguet F; Buono G; Verger R; Cambillau C; van Tilbeurgh H Biochemistry; 1995 Mar; 34(9):2751-62. PubMed ID: 7893686 [TBL] [Abstract][Full Text] [Related]
14. The halo-substituent effect on Pseudomonas cepacia lipase-mediated regioselective acylation of nucleosides: A comparative investigation. Wang ZY; Bi YH; Yang RL; Duan ZQ; Nie LH; Li XQ; Zong MH; Wu J J Biotechnol; 2015 Oct; 212():153-8. PubMed ID: 26325198 [TBL] [Abstract][Full Text] [Related]
15. Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Yang J; Koga Y; Nakano H; Yamane T Protein Eng; 2002 Feb; 15(2):147-52. PubMed ID: 11917151 [TBL] [Abstract][Full Text] [Related]
16. Fluorescent inhibitors reveal solvent-dependent micropolarity in the lipid binding sites of lipases. Oskolkova OV; Hermetter A Biochim Biophys Acta; 2002 May; 1597(1):60-6. PubMed ID: 12009403 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study. Miled N; Roussel A; Bussetta C; Berti-Dupuis L; Rivière M; Buono G; Verger R; Cambillau C; Canaan S Biochemistry; 2003 Oct; 42(40):11587-93. PubMed ID: 14529268 [TBL] [Abstract][Full Text] [Related]
18. Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica. Chen GC; Kuan IC; Hong JR; Tsai BH; Lee SL; Yu CY Biotechnol Lett; 2011 Mar; 33(3):525-9. PubMed ID: 21046198 [TBL] [Abstract][Full Text] [Related]
19. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. Koga Y; Kato K; Nakano H; Yamane T J Mol Biol; 2003 Aug; 331(3):585-92. PubMed ID: 12899830 [TBL] [Abstract][Full Text] [Related]
20. The open conformation of a Pseudomonas lipase. Schrag JD; Li Y; Cygler M; Lang D; Burgdorf T; Hecht HJ; Schmid R; Schomburg D; Rydel TJ; Oliver JD; Strickland LC; Dunaway CM; Larson SB; Day J; McPherson A Structure; 1997 Feb; 5(2):187-202. PubMed ID: 9032074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]