These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 9660192)
1. Do ATP4- and Mg2+ bind stepwise to the F1-ATPase of Halobacterium saccharovorum? Schobert B Eur J Biochem; 1998 Jun; 254(2):363-70. PubMed ID: 9660192 [TBL] [Abstract][Full Text] [Related]
2. Physiological concentrations of divalent magnesium ion activate the serine/threonine specific protein kinase ERK2. Waas WF; Dalby KN Biochemistry; 2003 Mar; 42(10):2960-70. PubMed ID: 12627962 [TBL] [Abstract][Full Text] [Related]
3. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
4. F1-like properties of an ATPase from the archaebacterium Halobacterium saccharovorum. Schobert B J Biol Chem; 1991 May; 266(13):8008-14. PubMed ID: 1827114 [TBL] [Abstract][Full Text] [Related]
6. Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase. Vicario PP; Bennun A Arch Biochem Biophys; 1990 Apr; 278(1):99-105. PubMed ID: 2157363 [TBL] [Abstract][Full Text] [Related]
7. The catalytic site is located on subunit I of the ATPase from Halobacterium saccharovorum. A direct photoaffinity labeling study. Bonet ML; Schobert B Eur J Biochem; 1992 Jul; 207(1):369-76. PubMed ID: 1385781 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex. Hanley-Trawick S; Carpen ME; Dunaway-Mariano D; Pedersen PL; Hullihen J Arch Biochem Biophys; 1989 Jan; 268(1):116-23. PubMed ID: 2521440 [TBL] [Abstract][Full Text] [Related]
9. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related]
10. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate. Murataliev MB Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210 [TBL] [Abstract][Full Text] [Related]
11. Determination of the partial reactions of rotational catalysis in F1-ATPase. Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014 [TBL] [Abstract][Full Text] [Related]
12. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type. Yamaguchi M; Tonomura Y J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933 [TBL] [Abstract][Full Text] [Related]
13. Mutations in the nucleotide binding domain of the alpha subunits of the F1-ATPase from thermophilic Bacillus PS3 that affect cross-talk between nucleotide binding sites. Grodsky NB; Dou C; Allison WS Biochemistry; 1998 Jan; 37(4):1007-14. PubMed ID: 9454591 [TBL] [Abstract][Full Text] [Related]
14. The binding of a second divalent metal ion is necessary for the activation of ATP hydrolysis and its inhibition by tightly bound ADP in the ATPase from Halobacterium saccharovorum. Schobert B J Biol Chem; 1992 May; 267(15):10252-7. PubMed ID: 1534083 [TBL] [Abstract][Full Text] [Related]
15. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites. Ye JJ; Du J; Lin ZH Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570 [TBL] [Abstract][Full Text] [Related]
16. Complete kinetic and thermodynamic characterization of the unisite catalytic pathway of Escherichia coli F1-ATPase. Comparison with mitochondrial F1-ATPase and application to the study of mutant enzymes. Al-Shawi MK; Senior AE J Biol Chem; 1988 Dec; 263(36):19640-8. PubMed ID: 2904441 [TBL] [Abstract][Full Text] [Related]
17. Changes in cytosolic Mg2+ levels can regulate the activity of the plasma membrane H+-ATPase in maize. Hanstein S; Wang X; Qian X; Friedhoff P; Fatima A; Shan Y; Feng K; Schubert S Biochem J; 2011 Apr; 435(1):93-101. PubMed ID: 21247408 [TBL] [Abstract][Full Text] [Related]
18. Inhibition by excess of free ATP, and free Mg2+ ions of the mitochondrial F1-ATPase moiety from Phycomyces blakesleeanus. de Vicente JI; del Valle P; Busto F; de Arriaga D; Soler J Biochem Int; 1991 May; 24(2):339-47. PubMed ID: 1834062 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide/H(+)-dependent change in Mg2+ affinity at the ATPase inhibitory site of the mitochondrial F1-F0 ATP synthase. Bulygin VV; Syroeshkin AV; Vinogradov AD FEBS Lett; 1993 Aug; 328(1-2):193-6. PubMed ID: 8344425 [TBL] [Abstract][Full Text] [Related]
20. Inhibition and photoinactivation of the bovine heart mitochondrial F1-ATPase by the cytotoxic agent, dequalinium. Zhuo S; Allison WS Biochem Biophys Res Commun; 1988 May; 152(3):968-72. PubMed ID: 2897848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]