BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 9660750)

  • 1. Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels.
    Siddhanta A; Shields D
    J Biol Chem; 1998 Jul; 273(29):17995-8. PubMed ID: 9660750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network.
    Chen YG; Siddhanta A; Austin CD; Hammond SM; Sung TC; Frohman MA; Morris AJ; Shields D
    J Cell Biol; 1997 Aug; 138(3):495-504. PubMed ID: 9245781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of permeabilized cells to investigate secretory granule biogenesis.
    Ling WL; Siddhanta A; Shields D
    Methods; 1998 Oct; 16(2):141-9. PubMed ID: 9790860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells.
    Xu H; Shields D
    J Cell Biol; 1993 Sep; 122(6):1169-84. PubMed ID: 8104189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADP-ribosylation factor-1 stimulates formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells.
    Chen YG; Shields D
    J Biol Chem; 1996 Mar; 271(10):5297-300. PubMed ID: 8621377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling.
    Tu-Sekine B; Goldschmidt H; Raben DM
    Adv Biol Regul; 2015 Jan; 57():147-52. PubMed ID: 25446883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipase D in the Golgi apparatus.
    Riebeling C; Morris AJ; Shields D
    Biochim Biophys Acta; 2009 Sep; 1791(9):876-80. PubMed ID: 19376267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained diacylglycerol accumulation resulting from prolonged G protein-coupled receptor agonist-induced phosphoinositide breakdown in hepatocytes.
    Nilssen LS; Dajani O; Christoffersen T; Sandnes D
    J Cell Biochem; 2005 Feb; 94(2):389-402. PubMed ID: 15526278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells.
    Siddhanta A; Backer JM; Shields D
    J Biol Chem; 2000 Apr; 275(16):12023-31. PubMed ID: 10766834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis.
    Sweeney DA; Siddhanta A; Shields D
    J Biol Chem; 2002 Jan; 277(4):3030-9. PubMed ID: 11704660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol.
    Zhang C; Hwarng G; Cooper DE; Grevengoed TJ; Eaton JM; Natarajan V; Harris TE; Coleman RA
    J Biol Chem; 2015 Feb; 290(6):3519-28. PubMed ID: 25512376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelin-1 stimulates hydrolysis of phosphatidylcholine by phospholipases C and D in intact rat mesenteric arteries.
    Liu GL; Shaw L; Heagerty AM; Ohanian V; Ohanian J
    J Vasc Res; 1999; 36(1):35-46. PubMed ID: 10050072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agonist-mediated activation of phosphatidylcholine-specific phospholipase C and D in intestinal smooth muscle.
    Murthy KS; Makhlouf GM
    Mol Pharmacol; 1995 Aug; 48(2):293-304. PubMed ID: 7651363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between phosphatidic acid level and regulation of protein transit in colonic epithelial cell line HT29-cl19A.
    Auger R; Robin P; Camier B; Vial G; Rossignol B; Tenu JP; Raymond MN
    J Biol Chem; 1999 Oct; 274(40):28652-9. PubMed ID: 10497234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN--phosphoinositides as a common denominator?
    Tüscher O; Lorra C; Bouma B; Wirtz KW; Huttner WB
    FEBS Lett; 1997 Dec; 419(2-3):271-5. PubMed ID: 9428649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where do substrates of diacylglycerol kinases come from? Diacylglycerol kinases utilize diacylglycerol species supplied from phosphatidylinositol turnover-independent pathways.
    Sakane F; Mizuno S; Takahashi D; Sakai H
    Adv Biol Regul; 2018 Jan; 67():101-108. PubMed ID: 28918129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of phospholipase C- and phospholipase D-mediated phospholipid remodeling pathways to respiratory burst activation in human neutrophils stimulated by Candida albicans hyphae.
    Meshulam T; Billah MM; Eckel S; Griendling KK; Diamond RD
    J Leukoc Biol; 1995 Jun; 57(6):842-50. PubMed ID: 7790766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resynthesis of phosphatidylinositol in permeabilized neutrophils following phospholipase Cbeta activation: transport of the intermediate, phosphatidic acid, from the plasma membrane to the endoplasmic reticulum for phosphatidylinositol resynthesis is not dependent on soluble lipid carriers or vesicular transport.
    Whatmore J; Wiedemann C; Somerharju P; Swigart P; Cockcroft S
    Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):435-44. PubMed ID: 10393103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylcholine-specific phospholipase C and phospholipase D are respectively implicated in mitogen-activated protein kinase and nuclear factor kappaB activation in tumour-necrosis-factor-alpha-treated immature acute-myeloid-leukaemia cells.
    Plo I; Lautier D; Levade T; Sekouri H; Jaffrézou JP; Laurent G; Bettaïeb A
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):459-67. PubMed ID: 11023832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis.
    Carmon O; Laguerre F; Riachy L; Delestre-Delacour C; Wang Q; Tanguy E; Jeandel L; Cartier D; Thahouly T; Haeberlé AM; Fouillen L; Rezazgui O; Schapman D; Haefelé A; Goumon Y; Galas L; Renard PY; Alexandre S; Vitale N; Anouar Y; Montero-Hadjadje M
    FASEB J; 2020 May; 34(5):6769-6790. PubMed ID: 32227388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.