These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9660826)

  • 41. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human.
    Bilaud T; Koering CE; Binet-Brasselet E; Ancelin K; Pollice A; Gasser SM; Gilson E
    Nucleic Acids Res; 1996 Apr; 24(7):1294-303. PubMed ID: 8614633
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo and in vitro analyses of the AmyR binding site of the Aspergillus nidulans agdA promoter; requirement of the CGG direct repeat for induction and high affinity binding of AmyR.
    Tani S; Itoh T; Kato M; Kobayashi T; Tsukagoshi N
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1568-74. PubMed ID: 11515540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1.
    Kim JH; Polish J; Johnston M
    Mol Cell Biol; 2003 Aug; 23(15):5208-16. PubMed ID: 12861007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A single amino acid substitution in zinc finger 2 of Adr1p changes its binding specificity at two positions in UAS1.
    Cheng C; Young ET
    J Mol Biol; 1995 Aug; 251(1):1-8. PubMed ID: 7643379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dimerization of the Epstein-Barr virus ZEBRA protein in the yeast two-hybrid system. Comparison Of a ZEBRA variant with the B95-8 form.
    Martel-Renoir D; Wesner M; Joab I
    Biochimie; 2000 Feb; 82(2):139-45. PubMed ID: 10727769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions.
    Lefevre JF; Dayie KT; Peng JW; Wagner G
    Biochemistry; 1996 Feb; 35(8):2674-86. PubMed ID: 8611573
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1.
    Cho G; Kim J; Rho HM; Jung G
    Nucleic Acids Res; 1995 Aug; 23(15):2980-7. PubMed ID: 7659521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. First experimental evidence of a zinc binuclear cluster in AlcR protein, mutational and X-ray absorption studies.
    Ascone I; Lenouvel F; Sequeval D; Dexpert H; Felenbok B
    Biochim Biophys Acta; 1997 Dec; 1343(2):211-20. PubMed ID: 9434111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An amino-terminal fragment of GAL4 binds DNA as a dimer.
    Carey M; Kakidani H; Leatherwood J; Mostashari F; Ptashne M
    J Mol Biol; 1989 Oct; 209(3):423-32. PubMed ID: 2511324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combining structure-based design with phage display to create new Cys(2)His(2) zinc finger dimers.
    Wolfe SA; Ramm EI; Pabo CO
    Structure; 2000 Jul; 8(7):739-50. PubMed ID: 10903945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures.
    Boer VM; Daran JM; Almering MJ; de Winde JH; Pronk JT
    FEMS Yeast Res; 2005 Jul; 5(10):885-97. PubMed ID: 15949974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping the DNA binding domain of the Zap1 zinc-responsive transcriptional activator.
    Bird A; Evans-Galea MV; Blankman E; Zhao H; Luo H; Winge DR; Eide DJ
    J Biol Chem; 2000 May; 275(21):16160-6. PubMed ID: 10747942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate.
    Sze JY; Woontner M; Jaehning JA; Kohlhaw GB
    Science; 1992 Nov; 258(5085):1143-5. PubMed ID: 1439822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A physico-chemical investigation of the self-association of the DNA binding domain of the yeast transcriptional activator GAL4.
    Gadhavi P; Morgan PJ; Alefounder P; Harding SE
    Eur Biophys J; 1996; 24(6):405-12. PubMed ID: 8765712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mutations in target DNA elements of yeast HAP1 modulate its transcriptional activity without affecting DNA binding.
    Ha N; Hellauer K; Turcotte B
    Nucleic Acids Res; 1996 Apr; 24(8):1453-9. PubMed ID: 8628677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An essential yeast gene encoding a TTAGGG repeat-binding protein.
    Brigati C; Kurtz S; Balderes D; Vidali G; Shore D
    Mol Cell Biol; 1993 Feb; 13(2):1306-14. PubMed ID: 8423796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The yeast telomere length regulator TEL2 encodes a protein that binds to telomeric DNA.
    Kota RS; Runge KW
    Nucleic Acids Res; 1998 Mar; 26(6):1528-35. PubMed ID: 9490802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure of a new DNA-binding domain which regulates pathogenesis in a wide variety of fungi.
    Lohse MB; Rosenberg OS; Cox JS; Stroud RM; Finer-Moore JS; Johnson AD
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10404-10. PubMed ID: 24994900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of the Saccharomyces cerevisiae genes STB1-STB5 encoding Sin3p binding proteins.
    Kasten MM; Stillman DJ
    Mol Gen Genet; 1997 Oct; 256(4):376-86. PubMed ID: 9393435
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1.
    Cheng C; Kacherovsky N; Dombek KM; Camier S; Thukral SK; Rhim E; Young ET
    Mol Cell Biol; 1994 Jun; 14(6):3842-52. PubMed ID: 8196627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.