These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 9660838)

  • 1. Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta.
    Chu B; Zhong R; Soncin F; Stevenson MA; Calderwood SK
    J Biol Chem; 1998 Jul; 273(29):18640-6. PubMed ID: 9660838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1.
    Chu B; Soncin F; Price BD; Stevenson MA; Calderwood SK
    J Biol Chem; 1996 Nov; 271(48):30847-57. PubMed ID: 8940068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation.
    Kline MP; Morimoto RI
    Mol Cell Biol; 1997 Apr; 17(4):2107-15. PubMed ID: 9121459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1.
    Xavier IJ; Mercier PA; McLoughlin CM; Ali A; Woodgett JR; Ovsenek N
    J Biol Chem; 2000 Sep; 275(37):29147-52. PubMed ID: 10856293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1.
    Wang X; Grammatikakis N; Siganou A; Calderwood SK
    Mol Cell Biol; 2003 Sep; 23(17):6013-26. PubMed ID: 12917326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of human heat shock factor 1 activity at control temperature by phosphorylation.
    Knauf U; Newton EM; Kyriakis J; Kingston RE
    Genes Dev; 1996 Nov; 10(21):2782-93. PubMed ID: 8946918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members.
    Kim J; Nueda A; Meng YH; Dynan WS; Mivechi NF
    J Cell Biochem; 1997 Oct; 67(1):43-54. PubMed ID: 9328838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of protein kinases reveals different mechanisms for upregulation of heat shock proteins in motor neurons and non-neuronal cells.
    Taylor DM; De Koninck P; Minotti S; Durham HD
    Mol Cell Neurosci; 2007 Jan; 34(1):20-33. PubMed ID: 17113785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1.
    Holmberg CI; Hietakangas V; Mikhailov A; Rantanen JO; Kallio M; Meinander A; Hellman J; Morrice N; MacKintosh C; Morimoto RI; Eriksson JE; Sistonen L
    EMBO J; 2001 Jul; 20(14):3800-10. PubMed ID: 11447121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity.
    Truman AW; Millson SH; Nuttall JM; Mollapour M; Prodromou C; Piper PW
    Eukaryot Cell; 2007 Apr; 6(4):744-52. PubMed ID: 17293484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase.
    Woods YL; Cohen P; Becker W; Jakes R; Goedert M; Wang X; Proud CG
    Biochem J; 2001 May; 355(Pt 3):609-15. PubMed ID: 11311121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between extracellular signal-regulated protein kinase 1, 14-3-3epsilon, and heat shock factor 1 during stress.
    Wang X; Grammatikakis N; Siganou A; Stevenson MA; Calderwood SK
    J Biol Chem; 2004 Nov; 279(47):49460-9. PubMed ID: 15364926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification.
    Hilgarth RS; Hong Y; Park-Sarge OK; Sarge KD
    Biochem Biophys Res Commun; 2003 Mar; 303(1):196-200. PubMed ID: 12646186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity.
    Bijur GN; Jope RS
    J Neurochem; 2000 Dec; 75(6):2401-8. PubMed ID: 11080191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock.
    He B; Meng YH; Mivechi NF
    Mol Cell Biol; 1998 Nov; 18(11):6624-33. PubMed ID: 9774677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JNK phosphorylates the HSF1 transcriptional activation domain: role of JNK in the regulation of the heat shock response.
    Park J; Liu AY
    J Cell Biochem; 2001; 82(2):326-38. PubMed ID: 11527157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding.
    Wang X; Khaleque MA; Zhao MJ; Zhong R; Gaestel M; Calderwood SK
    J Biol Chem; 2006 Jan; 281(2):782-91. PubMed ID: 16278218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases.
    Dayalan Naidu S; Sutherland C; Zhang Y; Risco A; de la Vega L; Caunt CJ; Hastie CJ; Lamont DJ; Torrente L; Chowdhry S; Benjamin IJ; Keyse SM; Cuenda A; Dinkova-Kostova AT
    Mol Cell Biol; 2016 Sep; 36(18):2403-17. PubMed ID: 27354066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.
    Sarge KD; Murphy SP; Morimoto RI
    Mol Cell Biol; 1993 Mar; 13(3):1392-407. PubMed ID: 8441385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.