BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9660925)

  • 21. Relationship between structure, dynamics and function of hydrated purple membrane investigated by neutron scattering and dielectric spectroscopy.
    Buchsteiner A; Lechner RE; Hauss T; Dencher NA
    J Mol Biol; 2007 Aug; 371(4):914-23. PubMed ID: 17599349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nature of thermal transitions in purple membranes from Halobacterium halobium.
    Shnyrov VL; Azuaga AI; Mateo PL
    Biochem Soc Trans; 1994 Aug; 22(3):367S. PubMed ID: 7821619
    [No Abstract]   [Full Text] [Related]  

  • 24. Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
    Li H; Chen DL; Zhong S; Xu B; Han BS; Hu KS
    J Phys Chem B; 2005 Jun; 109(22):11273-8. PubMed ID: 16852376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray diffraction from a single layer of purple membrane at the air/water interface.
    Verclas SA; Howes PB; Kjaer K; Wurlitzer A; Weygand M; Büldt G; Dencher NA; Lösche M
    J Mol Biol; 1999 Apr; 287(5):837-43. PubMed ID: 10222193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of both melittin and its site-specific mutants with bacteriorhodopsin of Halobacterium halobium: sites of electrostatic interaction on melittin.
    Jiang QX; Hu KS; Shi H
    Photochem Photobiol; 1994 Aug; 60(2):175-8. PubMed ID: 7938217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoscale distinction of membrane patches--a TERS study of Halobacterium salinarum.
    Deckert-Gaudig T; Böhme R; Freier E; Sebesta A; Merkendorf T; Popp J; Gerwert K; Deckert V
    J Biophotonics; 2012 Jul; 5(7):582-91. PubMed ID: 22371320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin.
    Gordeliy VI; Schlesinger R; Efremov R; Büldt G; Heberle J
    Methods Mol Biol; 2003; 228():305-16. PubMed ID: 12824562
    [No Abstract]   [Full Text] [Related]  

  • 30. MALDI-TOF/MS analysis of archaebacterial lipids in lyophilized membranes dry-mixed with 9-aminoacridine.
    Angelini R; Babudri F; Lobasso S; Corcelli A
    J Lipid Res; 2010 Sep; 51(9):2818-25. PubMed ID: 20538644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination of extended X-ray absorption fine structure spectroscopy with lipidic cubic phases for the study of cation binding in bacteriorhodopsin.
    Perálvarez-Marín A; Sepulcre F; Márquez M; Proietti MG; Padrós E
    Eur Biophys J; 2011 Aug; 40(8):1007-12. PubMed ID: 21667310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice.
    Isenbarger TA; Krebs MP
    Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid-protein interactions in the purple membrane: structural specificity within the hydrophobic domain.
    Pomerleau V; Harvey-Girard E; Boucher F
    Biochim Biophys Acta; 1995 Mar; 1234(2):221-4. PubMed ID: 7696297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functionally relevant coupled dynamic profile of bacteriorhodopsin and lipids in purple membranes.
    Kamihira M; Watts A
    Biochemistry; 2006 Apr; 45(13):4304-13. PubMed ID: 16566605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Culture temperature affects the molecular motion of bacteriorhodopsin within the purple membrane.
    Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N
    Chem Pharm Bull (Tokyo); 1996 Mar; 44(3):473-6. PubMed ID: 8882448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quantitative XANES analysis of the calcium high-affinity binding site of the purple membrane.
    Sepulcre F; Proietti MG; Benfatto M; Della Longa S; García J; Padrós E
    Biophys J; 2004 Jul; 87(1):513-20. PubMed ID: 15240484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes.
    Fitter J; Lechner RE; Buldt G; Dencher NA
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7600-5. PubMed ID: 8755521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly of purple membranes on polyelectrolyte films.
    Saab MB; Estephan E; Cloitre T; Legros R; Cuisinier FJ; Zimányi L; Gergely C
    Langmuir; 2009 May; 25(9):5159-67. PubMed ID: 19397356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium.
    Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW
    Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rotational orientation of transmembrane alpha-helices in bacteriorhodopsin. A neutron diffraction study.
    Samatey FA; Zaccaï G; Engelman DM; Etchebest C; Popot JL
    J Mol Biol; 1994 Mar; 236(4):1093-104. PubMed ID: 8120889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.