BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9661281)

  • 1. Mathematical modelling of the release of drug from porous, nonswelling transdermal drug-delivery devices.
    Lee AJ; King JR; Hibberd S
    IMA J Math Appl Med Biol; 1998 Jun; 15(2):135-63. PubMed ID: 9661281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled diffusional release of dispersed solute drugs from biodegradable implants of various geometries.
    Collins R; Paul Z; Reynolds DB; Short RF; Wasuwanich S
    Biomed Sci Instrum; 1997; 33():137-42. PubMed ID: 9731349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling drug release from inert matrix systems: from moving-boundary to continuous-field descriptions.
    Frenning G
    Int J Pharm; 2011 Oct; 418(1):88-99. PubMed ID: 21095224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of coupled diffusion with partitioning in transdermal drug delivery.
    Rim JE; Pinsky PM; van Osdol WW
    Ann Biomed Eng; 2005 Oct; 33(10):1422-38. PubMed ID: 16240090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of drug release kinetics from degradable polymeric devices.
    Fischel-Ghodsian F; Newton JM
    J Drug Target; 1993; 1(1):51-7. PubMed ID: 8069544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.
    Kaunisto E; Marucci M; Borgquist P; Axelsson A
    Int J Pharm; 2011 Oct; 418(1):54-77. PubMed ID: 21256939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow.
    Ali M; Horikawa S; Venkatesh S; Saha J; Hong JW; Byrne ME
    J Control Release; 2007 Dec; 124(3):154-62. PubMed ID: 17964678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of dispersed-drug delivery from planar polymeric systems: optimizing analytical solutions.
    Helbling IM; Ibarra JC; Luna JA; Cabrera MI; Grau RJ
    Int J Pharm; 2010 Nov; 400(1-2):131-7. PubMed ID: 20816929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultured skin loaded with tetracycline HCl and chloramphenicol as dermal delivery system: mathematical evaluation of the cultured skin containing antibiotics.
    Hada N; Hasegawa T; Takahashi H; Ishibashi T; Sugibayashi K
    J Control Release; 2005 Nov; 108(2-3):341-50. PubMed ID: 16226333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release dynamic process identification for a cement based material in various leaching conditions. Part II. Modelling the release dynamics for different leaching conditions.
    Tiruta-Barna L; Rethy Z; Barna R
    J Environ Manage; 2005 Jan; 74(2):127-39. PubMed ID: 15627466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of dispersed-drug release from two-dimensional matrix tablets.
    Zhou Y; Chu JS; Zhou T; Wu XY
    Biomaterials; 2005 Mar; 26(8):945-52. PubMed ID: 15353206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular automata model for drug release from binary matrix and reservoir polymeric devices.
    Johannes Laaksonen T; Mikael Laaksonen H; Tapio Hirvonen J; Murtomäki L
    Biomaterials; 2009 Apr; 30(10):1978-87. PubMed ID: 19135719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular automata model for swelling-controlled drug release.
    Laaksonen H; Hirvonen J; Laaksonen T
    Int J Pharm; 2009 Oct; 380(1-2):25-32. PubMed ID: 19563871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial kinetics effects on transdermal drug delivery: a computer modeling.
    Xing MM; Pan N; Zhong W; Hui X; Maibach HI
    Skin Res Technol; 2008 May; 14(2):165-72. PubMed ID: 18412558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.
    Snorradóttir BS; Jónsdóttir F; Sigurdsson ST; Másson M
    J Pharm Sci; 2014 Aug; 103(8):2366-75. PubMed ID: 24984880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems.
    Babu RJ; Pandit JK
    Int J Pharm; 2005 Jan; 288(2):325-34. PubMed ID: 15620873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of drug release from bulk-degrading polymers.
    Lao LL; Peppas NA; Boey FY; Venkatraman SS
    Int J Pharm; 2011 Oct; 418(1):28-41. PubMed ID: 21182912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timely drug delivery from controlled-release devices: dynamic analysis and novel design concepts.
    Simon L
    Math Biosci; 2009 Feb; 217(2):151-8. PubMed ID: 19059271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions.
    Lee PI
    Int J Pharm; 2011 Oct; 418(1):18-27. PubMed ID: 21251957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.