BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1195 related articles for article (PubMed ID: 9661666)

  • 1. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants.
    Hoang TT; Karkhoff-Schweizer RR; Kutchma AJ; Schweizer HP
    Gene; 1998 May; 212(1):77-86. PubMed ID: 9661666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains.
    Hoang TT; Kutchma AJ; Becher A; Schweizer HP
    Plasmid; 2000 Jan; 43(1):59-72. PubMed ID: 10610820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker.
    Schweizer HP
    Mol Microbiol; 1992 May; 6(9):1195-204. PubMed ID: 1588818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new simple method for introducing an unmarked mutation into a large gene of non-competent Gram-negative bacteria by FLP/FRT recombination.
    Ishikawa M; Hori K
    BMC Microbiol; 2013 Apr; 13():86. PubMed ID: 23594401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants.
    Choi KH; Schweizer HP
    BMC Microbiol; 2005 May; 5():30. PubMed ID: 15907219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic tools for allelic replacement in Burkholderia species.
    Barrett AR; Kang Y; Inamasu KS; Son MS; Vukovich JM; Hoang TT
    Appl Environ Microbiol; 2008 Jul; 74(14):4498-508. PubMed ID: 18502918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa.
    Schweizer HP; Hoang TT
    Gene; 1995 May; 158(1):15-22. PubMed ID: 7789804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria.
    Metcalf WW; Jiang W; Daniels LL; Kim SK; Haldimann A; Wanner BL
    Plasmid; 1996 Jan; 35(1):1-13. PubMed ID: 8693022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of non-polar mutants in Haemophilus influenzae using FLP recombinase technology.
    Tracy E; Ye F; Baker BD; Munson RS
    BMC Mol Biol; 2008 Nov; 9():101. PubMed ID: 19014437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system.
    Huang LC; Wood EA; Cox MM
    J Bacteriol; 1997 Oct; 179(19):6076-83. PubMed ID: 9324255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes.
    Kopke K; Hoff B; Kück U
    Appl Environ Microbiol; 2010 Jul; 76(14):4664-74. PubMed ID: 20472720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.
    Cherepanov PP; Wackernagel W
    Gene; 1995 May; 158(1):9-14. PubMed ID: 7789817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Prokaryotic expression of DNA recombinase FLP and its purification with enzymatic activity].
    Gai Y; Wang WQ; Lu H; Jiang XN
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):724-9. PubMed ID: 17822052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NikAB- or NikB-dependent intracellular recombination between tandemly repeated oriT sequences of plasmid R64 in plasmid or single-stranded phage vectors.
    Furuya N; Komano T
    J Bacteriol; 2003 Jul; 185(13):3871-7. PubMed ID: 12813081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Escherichia coli system for assay of F1p site-specific recombination on substrate plasmids.
    Snaith MR; Kilby NJ; Murray JA
    Gene; 1996 Nov; 180(1-2):225-7. PubMed ID: 8973372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A broad-host-range in vivo pop-out and amplification system for generating large quantities of 50- to 100-kb genomic fragments for direct DNA sequencing.
    Wild J; Hradecná Z; Pósfai G; Szybalski W
    Gene; 1996 Nov; 179(1):181-8. PubMed ID: 8955645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLP-mediated recombination of FRT sites in the maize genome.
    Lyznik LA; Rao KV; Hodges TK
    Nucleic Acids Res; 1996 Oct; 24(19):3784-9. PubMed ID: 8871559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli.
    Chiang CJ; Chen PT; Chao YP
    Biotechnol Bioeng; 2008 Dec; 101(5):985-95. PubMed ID: 18553504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FLP-mediated recombination in the vector mosquito, Aedes aegypti.
    Morris AC; Schaub TL; James AA
    Nucleic Acids Res; 1991 Nov; 19(21):5895-900. PubMed ID: 1945877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.
    Bierman M; Logan R; O'Brien K; Seno ET; Rao RN; Schoner BE
    Gene; 1992 Jul; 116(1):43-9. PubMed ID: 1628843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 60.