These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9662081)

  • 1. Daily patterns of running wheel activity in male anophthalmic mice.
    Laemle LK; Ottenweller JE
    Physiol Behav; 1998 May; 64(2):165-71. PubMed ID: 9662081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of photic entrainment and altered free-running circadian rhythms in math5-/- mice.
    Wee R; Castrucci AM; Provencio I; Gan L; Van Gelder RN
    J Neurosci; 2002 Dec; 22(23):10427-33. PubMed ID: 12451142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian rhythms in sleep-wakefulness and wheel-running activity in a congenitally anophthalmic rat mutant.
    Ibuka N
    Physiol Behav; 1987; 39(3):321-6. PubMed ID: 3575471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesions of the suprachiasmatic nucleus disrupt circadian locomotor rhythms in the mouse.
    Schwartz WJ; Zimmerman P
    Physiol Behav; 1991 Jun; 49(6):1283-7. PubMed ID: 1896511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between circadian rhythmicity and vasoactive intestinal polypeptide in the suprachiasmatic nucleus of congenitally anophthalmic mice.
    Laemle LK; Ottenweller JE
    Brain Res; 2001 Oct; 917(1):105-11. PubMed ID: 11602234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and anatomical properties of the suprachiasmatic nucleus of an anophthalmic mouse.
    Laemle LK; Hori N; Strominger NL; Tan Y; Carpenter DO
    Brain Res; 2002 Oct; 953(1-2):73-81. PubMed ID: 12384240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonergic serotonin (1A) mixed agonists/antagonists elicit large-magnitude phase shifts in hamster circadian wheel-running rhythms.
    Gannon RL
    Neuroscience; 2003; 119(2):567-76. PubMed ID: 12770569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring circadian and acute light responses in mice using wheel running activity.
    LeGates TA; Altimus CM
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21339719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal suprachiasmatic nucleus lesions: effects on the development of circadian rhythms in the rat.
    Mosko SS; Moore RY
    Brain Res; 1979 Mar; 164():17-38. PubMed ID: 427555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photic entrainment of circadian rhythms in rodents.
    Rea MA
    Chronobiol Int; 1998 Sep; 15(5):395-423. PubMed ID: 9787933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus.
    Takahashi JS; Menaker M
    J Neurosci; 1982 Jun; 2(6):815-28. PubMed ID: 7086486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Placing ocular mutants into a functional context: a chronobiological approach.
    Albrecht U; Foster RG
    Methods; 2002 Dec; 28(4):465-77. PubMed ID: 12507465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotoxic effects of neonatal injections of monosodium L-glutamate (L-MSG) on the retinal ganglion cell layer of the golden hamster: anatomical and functional consequences on the circadian system.
    Chambille I; Serviere J
    J Comp Neurol; 1993 Dec; 338(1):67-82. PubMed ID: 8300900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the retinohypothalamic tract in the photic-like effects of the serotonin agonist quipazine in the rat.
    Graff C; Kohler M; Pévet P; Wollnik F
    Neuroscience; 2005; 135(1):273-83. PubMed ID: 16084651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms for entrainment and generation of mammalian circadian rhythms.
    Rusak B
    Fed Proc; 1979 Nov; 38(12):2589-95. PubMed ID: 499575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior.
    Tso CF; Simon T; Greenlaw AC; Puri T; Mieda M; Herzog ED
    Curr Biol; 2017 Apr; 27(7):1055-1061. PubMed ID: 28343966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycogen synthase kinase-3β haploinsufficiency lengthens the circadian locomotor activity period in mice.
    Lavoie J; Hébert M; Beaulieu JM
    Behav Brain Res; 2013 Sep; 253():262-5. PubMed ID: 23919927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental disruption of the serotonin system alters circadian rhythms.
    Paulus EV; Mintz EM
    Physiol Behav; 2012 Jan; 105(2):257-63. PubMed ID: 21907225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.