These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Lumped parameter model for computing the minimum pressure during mechanical heart valve closure. Maines BH; Brennen CE J Biomech Eng; 2005 Aug; 127(4):648-55. PubMed ID: 16121535 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of stentless kangaroo aortic valves in the mitral position of juvenile sheep. Hodge AJ; Neethling WM; Glancy R J Heart Valve Dis; 2004 Jul; 13(4):681-8. PubMed ID: 15311878 [TBL] [Abstract][Full Text] [Related]
27. Importance of shear in prosthetic valve closure dynamics. Scotten LN; Siegel R J Heart Valve Dis; 2011 Nov; 20(6):664-72. PubMed ID: 22655497 [TBL] [Abstract][Full Text] [Related]
28. In vitro observations of mechanical heart valve cavitation. Shu MC; Leuer LH; Armitage TL; Schneider TE; Christiansen DR J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S85-92; discussion S92-3. PubMed ID: 8061874 [TBL] [Abstract][Full Text] [Related]
29. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage. Manning KB; Herbertson LH; Fontaine AA; Deutsch S J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443 [TBL] [Abstract][Full Text] [Related]
32. Novel "biomechanical" polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients? Sachweh JS; Daebritz SH ASAIO J; 2006; 52(5):575-80. PubMed ID: 16966862 [TBL] [Abstract][Full Text] [Related]
33. Pressure distribution near the occluders and impact forces on the outlet struts of Björk-Shiley convexo-concave valves during closing. Chandran KB; Lee CS; Aluri S; Dellsperger KC; Schreck S; Wieting DW J Heart Valve Dis; 1996 Mar; 5(2):199-206. PubMed ID: 8665015 [TBL] [Abstract][Full Text] [Related]
34. In vitro closing behaviour of Björk-Shiley, St Jude and Hancock heart valve prostheses in relation to the in vivo recorded aortic valve closure. van Steenhoven AA; van Duppen TJ; Cauwenberg JW; van Renterghem RJ J Biomech; 1982; 15(11):841-8. PubMed ID: 7161286 [TBL] [Abstract][Full Text] [Related]
35. The porous metal-surfaced heart valve. Long-term study without long-term anticoagulation in mitral position in goats. Björk VO; Wilson GJ; Sternlieb JJ; Kaminsky DB J Thorac Cardiovasc Surg; 1988 Jun; 95(6):1067-82. PubMed ID: 3374158 [TBL] [Abstract][Full Text] [Related]
36. A physical model describing the mechanism for formation of gas microbubbles in patients with mitral mechanical heart valves. Rambod E; Beizaie M; Shusser M; Milo S; Gharib M Ann Biomed Eng; 1999; 27(6):774-92. PubMed ID: 10625150 [TBL] [Abstract][Full Text] [Related]
37. Transcranial high-intensity Doppler signals in patients with mechanical heart valve prostheses: their relationship with abnormal intracavitary echoes. Deklunder G; Lecroart JL; Savoye C; Coquet B; Houdas Y J Heart Valve Dis; 1996 Nov; 5(6):662-7. PubMed ID: 8953445 [TBL] [Abstract][Full Text] [Related]
38. In-vivo experience with the Triflo trileaflet mechanical heart valve. Gallegos RP; Rivard AL; Suwan PT; Black S; Bertog S; Steinseifer U; Armien A; Lahti M; Bianco RW J Heart Valve Dis; 2006 Nov; 15(6):791-9. PubMed ID: 17152787 [TBL] [Abstract][Full Text] [Related]
39. In-vivo prediction of cavitation near a Medtronic Hall valve. Johansen P; Andersen TS; Hasenkam JM; Nygaard H J Heart Valve Dis; 2004 Jul; 13(4):651-8. PubMed ID: 15311874 [TBL] [Abstract][Full Text] [Related]
40. Hemodynamic assessment of carbomedics bileaflet heart valves by ultrasound: studies in the aortic and mitral positions. Cape EG; Sung HW; Yoganathan AP Ultrasound Med Biol; 1996; 22(4):421-30. PubMed ID: 8795169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]