These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9662151)

  • 21. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks.
    Trayanova N; Bray MA
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):745-57. PubMed ID: 9255682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of electroporation in defibrillation.
    Al-Khadra A; Nikolski V; Efimov IR
    Circ Res; 2000 Oct; 87(9):797-804. PubMed ID: 11055984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks.
    Krassowska W; Kumar MS
    Ann Biomed Eng; 1997; 25(6):949-63. PubMed ID: 9395041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiac responses to premature monophasic and biphasic field stimuli. Results from cell and tissue modeling studies.
    Fishler MG; Sobie EA; Tung L; Thakor NV
    J Electrocardiol; 1995; 28 Suppl():174-9. PubMed ID: 8656107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of cardiac tissue by extracellular electrical shocks: formation of 'secondary sources' at intercellular clefts in monolayers of cultured myocytes.
    Fast VG; Rohr S; Gillis AM; Kléber AG
    Circ Res; 1998 Feb; 82(3):375-85. PubMed ID: 9486666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks.
    Latimer DC; Roth BJ
    IEEE Trans Biomed Eng; 1999 May; 46(5):612-4. PubMed ID: 10230141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models.
    Colli Franzone P; Pavarino LF; Scacchi S
    Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slow recovery of excitability and the Wenckebach phenomenon in the single guinea pig ventricular myocyte.
    Delmar M; Michaels DC; Jalife J
    Circ Res; 1989 Sep; 65(3):761-74. PubMed ID: 2475274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells.
    Cheng DK; Tung L; Sobie EA
    Am J Physiol; 1999 Jul; 277(1):H351-62. PubMed ID: 10409215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the potential gradient field in ventricular fibrillation from shocks delivered in paced rhythm.
    Idriss SF; Melnick SB; Wolf PD; Smith WM; Ideker RE
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2336-44. PubMed ID: 7611485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of defibrillation shock energy and timing on 3-D computer model of heart.
    Province RA; Fishler MG; Thakor NV
    Ann Biomed Eng; 1993; 21(1):19-31. PubMed ID: 8434817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential.
    Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE
    Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear effects in subthreshold virtual electrode polarization.
    Sambelashvili AT; Nikolski VP; Efimov IR
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2368-74. PubMed ID: 12742834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling induction of a rotor in cardiac muscle by perpendicular electric shocks.
    Skouibine K; Wall J; Krassowska W; Trayanova N
    Med Biol Eng Comput; 2002 Jan; 40(1):47-55. PubMed ID: 11954708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks.
    Neunlist M; Tung L
    Am J Physiol; 1997 Dec; 273(6):H2817-25. PubMed ID: 9435619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the tissue-bath interface on the induced transmembrane potential: a modeling study in cardiac stimulation.
    Trayanova NA
    Ann Biomed Eng; 1997; 25(5):783-92. PubMed ID: 9300102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defibrillation depresses heart sarcoplasmic reticulum calcium pump: a mechanism of postshock dysfunction.
    Jones DL; Narayanan N
    Am J Physiol; 1998 Jan; 274(1):H98-105. PubMed ID: 9458857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane.
    Ohuchi K; Fukui Y; Sakuma I; Shibata N; Honjo H; Kodama I
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):18-30. PubMed ID: 11794768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.