These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9662151)

  • 41. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period.
    Dillon SM
    Circ Res; 1991 Sep; 69(3):842-56. PubMed ID: 1873877
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ionic currents involved in shock-induced nonlinear changes in transmembrane potential responses of single cardiac cells.
    Sharma V; Tung L
    Pflugers Arch; 2004 Dec; 449(3):248-56. PubMed ID: 15480751
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of anode break stimulation in the heart.
    Ranjan R; Chiamvimonvat N; Thakor NV; Tomaselli GF; Marban E
    Biophys J; 1998 Apr; 74(4):1850-63. PubMed ID: 9545047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes.
    Fast VG; Rohr S; Ideker RE
    Am J Physiol Heart Circ Physiol; 2000 Mar; 278(3):H688-97. PubMed ID: 10710335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cardiac optical mapping under a translucent stimulation electrode.
    Liau J; Dumas J; Janks D; Roth BJ; Knisley SB
    Ann Biomed Eng; 2004 Sep; 32(9):1202-10. PubMed ID: 15493508
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling electroporation in a single cell. I. Effects Of field strength and rest potential.
    DeBruin KA; Krassowska W
    Biophys J; 1999 Sep; 77(3):1213-24. PubMed ID: 10465736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diastolic field stimulation: the role of shock duration in epicardial activation and propagation.
    Woods MC; Uzelac I; Holcomb MR; Wikswo JP; Sidorov VY
    Biophys J; 2013 Jul; 105(2):523-32. PubMed ID: 23870273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroporation of the heart.
    Nikolski VP; Efimov IR
    Europace; 2005 Sep; 7 Suppl 2():146-54. PubMed ID: 16102512
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping.
    Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F
    J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A model analysis of aftereffects of high-intensity DC stimulation on action potential of ventricular muscle.
    Sakuma I; Haraguchi T; Ohuchi K; Fukui Y; Kodama I; Toyama J; Shibata N; Hosoda S
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):258-67. PubMed ID: 9473849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical measurements of intramural action potentials in isolated porcine hearts using optrodes.
    Kong W; Fakhari N; Sharifov OF; Ideker RE; Smith WM; Fast VG
    Heart Rhythm; 2007 Nov; 4(11):1430-6. PubMed ID: 17954403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Induction of ventricular fibrillation by T-wave field-shocks in the isolated perfused rabbit heart: role of nonuniform shock responses.
    Kirchhof PF; Fabritz CL; Behrens S; Franz MR
    Basic Res Cardiol; 1997 Feb; 92(1):35-44. PubMed ID: 9062650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Animated images of cardiac membrane voltage during defibrillation.
    Pruente HM; Bove R; Kwaku KF; Dillon SM
    J Electrocardiol; 1995; 28 Suppl():7-15. PubMed ID: 8656132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of sotalol and acute ventricular dilatation on action potential duration and dispersion of repolarization after defibrillation shocks.
    Kirchhof P; Milberg P; Eckardt L; Breithardt G; Haverkamp W
    J Cardiovasc Pharmacol; 2003 Apr; 41(4):640-8. PubMed ID: 12658067
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transmembrane potential changes caused by monophasic and biphasic shocks.
    Zhou X; Smith WM; Justice RK; Wayland JL; Ideker RE
    Am J Physiol; 1998 Nov; 275(5):H1798-807. PubMed ID: 9815088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Postshock potential gradients and dispersion of repolarization in cells stimulated with monophasic and biphasic waveforms.
    Sobie EA; Tung L
    J Cardiovasc Electrophysiol; 1998 Jul; 9(7):743-56. PubMed ID: 9684722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle.
    Knisley SB
    Circ Res; 1995 Dec; 77(6):1229-39. PubMed ID: 7586236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Action potential conduction between a ventricular cell model and an isolated ventricular cell.
    Wilders R; Kumar R; Joyner RW; Jongsma HJ; Verheijck EE; Golod D; van Ginneken AC; Goolsby WN
    Biophys J; 1996 Jan; 70(1):281-95. PubMed ID: 8770204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prevention of action potentials during extracellular electrical stimulation of long duration.
    Zhou X; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1997 Jul; 8(7):779-89. PubMed ID: 9255685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.