These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9662179)

  • 1. Analysis of trypanosomal endocytic organelles using preparative free-flow electrophoresis.
    Grab DJ; Webster P; Lonsdale-Eccles JD
    Electrophoresis; 1998 Jun; 19(7):1162-70. PubMed ID: 9662179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocytosis by African trypanosomes. II. Occurrence in different life-cycle stages and intracellular sorting.
    Webster P; Fish WR
    Eur J Cell Biol; 1989 Aug; 49(2):303-10. PubMed ID: 2776776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytosis by African trypanosomes. I. Three-dimensional structure of the endocytic organelles in Trypanosoma brucei and T. congolense.
    Webster P
    Eur J Cell Biol; 1989 Aug; 49(2):295-302. PubMed ID: 2776775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypanosoma brucei rhodesiense: membrane glycoproteins localized primarily in endosomes and lysosomes of bloodstream forms.
    Brickman MJ; Balber AE
    Exp Parasitol; 1993 Jun; 76(4):329-44. PubMed ID: 7685707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transferrin receptor in African trypanosomes: identification, partial characterization and subcellular localization.
    Grab DJ; Shaw MK; Wells CW; Verjee Y; Russo DC; Webster P; Naessens J; Fish WR
    Eur J Cell Biol; 1993 Oct; 62(1):114-26. PubMed ID: 8269969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocytosed transferrin in African trypanosomes is delivered to lysosomes and may not be recycled.
    Grab DJ; Wells CW; Shaw MK; Webster P; Russo DC
    Eur J Cell Biol; 1992 Dec; 59(2):398-404. PubMed ID: 1493805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei.
    Absalon S; Blisnick T; Bonhivers M; Kohl L; Cayet N; Toutirais G; Buisson J; Robinson D; Bastin P
    J Cell Sci; 2008 Nov; 121(Pt 22):3704-16. PubMed ID: 18940910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunolocalization of a cysteine protease within the lysosomal system of Trypanosoma congolense.
    Mbawa ZR; Webster P; Lonsdale-Eccles JD
    Eur J Cell Biol; 1991 Dec; 56(2):243-50. PubMed ID: 1802711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different temperature sensitivity of endosomes involved in transport to lysosomes and transcytosis in rat hepatocytes: analysis by free-flow electrophoresis.
    Ellinger I; Klapper H; Courtoy PJ; Vaerman JP; Fuchs R
    Electrophoresis; 2002 Jul; 23(13):2117-29. PubMed ID: 12210267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system.
    Overath P; Engstler M
    Mol Microbiol; 2004 Aug; 53(3):735-44. PubMed ID: 15255888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis.
    Hall B; Allen CL; Goulding D; Field MC
    Mol Biochem Parasitol; 2004 Nov; 138(1):67-77. PubMed ID: 15500917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei.
    Nolan DP; Geuskens M; Pays E
    Curr Biol; 1999 Oct; 9(20):1169-72. PubMed ID: 10531030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the in vivo hepatic lysosomal processing of horseradish peroxidase.
    Marinelli RA; Pellegrino JM; Larocca MC
    Can J Physiol Pharmacol; 1996 Jan; 74(1):89-96. PubMed ID: 8963957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-flow electrophoretic analysis of endosome subpopulations of rat hepatocytes.
    Stefaner I; Klapper H; Sztul E; Fuchs R
    Electrophoresis; 1997 Dec; 18(14):2516-22. PubMed ID: 9527479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step separation of endocytic organelles, Golgi/trans-Golgi network and plasma membrane by density gradient electrophoresis.
    Lindner R
    Electrophoresis; 2001 Feb; 22(3):386-93. PubMed ID: 11258743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.
    Marsh M; Schmid S; Kern H; Harms E; Male P; Mellman I; Helenius A
    J Cell Biol; 1987 Apr; 104(4):875-86. PubMed ID: 3031085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of endocitic organelles by density gradient centrifugation.
    de Araùjo ME; Huber LA; Stasyk T
    Methods Mol Biol; 2008; 424():317-31. PubMed ID: 18369872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative analysis of the endocytic pathway in baby hamster kidney cells.
    Griffiths G; Back R; Marsh M
    J Cell Biol; 1989 Dec; 109(6 Pt 1):2703-20. PubMed ID: 2592402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles.
    Islinger M; Wildgruber R; Völkl A
    Electrophoresis; 2018 Sep; 39(18):2288-2299. PubMed ID: 29761848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution density gradient electrophoresis of subcellular organelles and proteins under nondenaturing conditions.
    Tulp A; Fernandez-Borja M; Verwoerd D; Neefjes J
    Electrophoresis; 1998 Jun; 19(8-9):1288-93. PubMed ID: 9694267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.