BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9662179)

  • 1. Analysis of trypanosomal endocytic organelles using preparative free-flow electrophoresis.
    Grab DJ; Webster P; Lonsdale-Eccles JD
    Electrophoresis; 1998 Jun; 19(7):1162-70. PubMed ID: 9662179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocytosis by African trypanosomes. II. Occurrence in different life-cycle stages and intracellular sorting.
    Webster P; Fish WR
    Eur J Cell Biol; 1989 Aug; 49(2):303-10. PubMed ID: 2776776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytosis by African trypanosomes. I. Three-dimensional structure of the endocytic organelles in Trypanosoma brucei and T. congolense.
    Webster P
    Eur J Cell Biol; 1989 Aug; 49(2):295-302. PubMed ID: 2776775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypanosoma brucei rhodesiense: membrane glycoproteins localized primarily in endosomes and lysosomes of bloodstream forms.
    Brickman MJ; Balber AE
    Exp Parasitol; 1993 Jun; 76(4):329-44. PubMed ID: 7685707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transferrin receptor in African trypanosomes: identification, partial characterization and subcellular localization.
    Grab DJ; Shaw MK; Wells CW; Verjee Y; Russo DC; Webster P; Naessens J; Fish WR
    Eur J Cell Biol; 1993 Oct; 62(1):114-26. PubMed ID: 8269969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocytosed transferrin in African trypanosomes is delivered to lysosomes and may not be recycled.
    Grab DJ; Wells CW; Shaw MK; Webster P; Russo DC
    Eur J Cell Biol; 1992 Dec; 59(2):398-404. PubMed ID: 1493805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei.
    Absalon S; Blisnick T; Bonhivers M; Kohl L; Cayet N; Toutirais G; Buisson J; Robinson D; Bastin P
    J Cell Sci; 2008 Nov; 121(Pt 22):3704-16. PubMed ID: 18940910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunolocalization of a cysteine protease within the lysosomal system of Trypanosoma congolense.
    Mbawa ZR; Webster P; Lonsdale-Eccles JD
    Eur J Cell Biol; 1991 Dec; 56(2):243-50. PubMed ID: 1802711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different temperature sensitivity of endosomes involved in transport to lysosomes and transcytosis in rat hepatocytes: analysis by free-flow electrophoresis.
    Ellinger I; Klapper H; Courtoy PJ; Vaerman JP; Fuchs R
    Electrophoresis; 2002 Jul; 23(13):2117-29. PubMed ID: 12210267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system.
    Overath P; Engstler M
    Mol Microbiol; 2004 Aug; 53(3):735-44. PubMed ID: 15255888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clathrin-mediated endocytosis is essential in Trypanosoma brucei.
    Allen CL; Goulding D; Field MC
    EMBO J; 2003 Oct; 22(19):4991-5002. PubMed ID: 14517238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis.
    Hall B; Allen CL; Goulding D; Field MC
    Mol Biochem Parasitol; 2004 Nov; 138(1):67-77. PubMed ID: 15500917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei.
    Nolan DP; Geuskens M; Pays E
    Curr Biol; 1999 Oct; 9(20):1169-72. PubMed ID: 10531030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the in vivo hepatic lysosomal processing of horseradish peroxidase.
    Marinelli RA; Pellegrino JM; Larocca MC
    Can J Physiol Pharmacol; 1996 Jan; 74(1):89-96. PubMed ID: 8963957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-flow electrophoretic analysis of endosome subpopulations of rat hepatocytes.
    Stefaner I; Klapper H; Sztul E; Fuchs R
    Electrophoresis; 1997 Dec; 18(14):2516-22. PubMed ID: 9527479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step separation of endocytic organelles, Golgi/trans-Golgi network and plasma membrane by density gradient electrophoresis.
    Lindner R
    Electrophoresis; 2001 Feb; 22(3):386-93. PubMed ID: 11258743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.
    Marsh M; Schmid S; Kern H; Harms E; Male P; Mellman I; Helenius A
    J Cell Biol; 1987 Apr; 104(4):875-86. PubMed ID: 3031085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of endocitic organelles by density gradient centrifugation.
    de Araùjo ME; Huber LA; Stasyk T
    Methods Mol Biol; 2008; 424():317-31. PubMed ID: 18369872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative analysis of the endocytic pathway in baby hamster kidney cells.
    Griffiths G; Back R; Marsh M
    J Cell Biol; 1989 Dec; 109(6 Pt 1):2703-20. PubMed ID: 2592402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles.
    Islinger M; Wildgruber R; Völkl A
    Electrophoresis; 2018 Sep; 39(18):2288-2299. PubMed ID: 29761848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.