These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose. Nakamura A; Tsukada T; Auer S; Furuta T; Wada M; Koivula A; Igarashi K; Samejima M J Biol Chem; 2013 May; 288(19):13503-10. PubMed ID: 23532843 [TBL] [Abstract][Full Text] [Related]
3. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. Divne C; Ståhlberg J; Teeri TT; Jones TA J Mol Biol; 1998 Jan; 275(2):309-25. PubMed ID: 9466911 [TBL] [Abstract][Full Text] [Related]
4. Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei. Christensen SJ; Kari J; Badino SF; Borch K; Westh P FEBS J; 2018 Dec; 285(23):4482-4493. PubMed ID: 30281909 [TBL] [Abstract][Full Text] [Related]
5. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Wohlfahrt G; Pellikka T; Boer H; Teeri TT; Koivula A Biochemistry; 2003 Sep; 42(34):10095-103. PubMed ID: 12939137 [TBL] [Abstract][Full Text] [Related]
6. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Du J; Zhang X; Li X; Zhao J; Liu G; Gao B; Qu Y Bioresour Technol; 2018 Oct; 266():19-25. PubMed ID: 29940438 [TBL] [Abstract][Full Text] [Related]
7. The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. Koivula A; Ruohonen L; Wohlfahrt G; Reinikainen T; Teeri TT; Piens K; Claeyssens M; Weber M; Vasella A; Becker D; Sinnott ML; Zou JY; Kleywegt GJ; Szardenings M; Ståhlberg J; Jones TA J Am Chem Soc; 2002 Aug; 124(34):10015-24. PubMed ID: 12188666 [TBL] [Abstract][Full Text] [Related]
8. Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Palonen H; Tenkanen M; Linder M Appl Environ Microbiol; 1999 Dec; 65(12):5229-33. PubMed ID: 10583969 [TBL] [Abstract][Full Text] [Related]
9. Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose. Srisodsuk M; Lehtiö J; Linder M; Margolles-Clark E; Reinikainen T; Teeri TT J Biotechnol; 1997 Sep; 57(1-3):49-57. PubMed ID: 9335165 [TBL] [Abstract][Full Text] [Related]
10. Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study. Mulakala C; Reilly PJ Proteins; 2005 Sep; 60(4):598-605. PubMed ID: 16001418 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability. Fang H; Zhao R; Li C; Zhao C Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063 [TBL] [Abstract][Full Text] [Related]
12. Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding. Varrot A; Schülein M; Davies GJ Biochemistry; 1999 Jul; 38(28):8884-91. PubMed ID: 10413461 [TBL] [Abstract][Full Text] [Related]
13. Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Teeri TT; Koivula A; Linder M; Wohlfahrt G; Divne C; Jones TA Biochem Soc Trans; 1998 May; 26(2):173-8. PubMed ID: 9649743 [No Abstract] [Full Text] [Related]
14. Hydrolytic properties of two cellulases of Trichoderma reesei expressed in yeast. Bailey MJ; Siika-aho M; Valkeajärvi A; Penttilä ME Biotechnol Appl Biochem; 1993 Feb; 17(1):65-76. PubMed ID: 8439405 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Reinikainen T; Ruohonen L; Nevanen T; Laaksonen L; Kraulis P; Jones TA; Knowles JK; Teeri TT Proteins; 1992 Dec; 14(4):475-82. PubMed ID: 1438185 [TBL] [Abstract][Full Text] [Related]
16. Delineating functional properties of a cello-oligosaccharide and β-glucan specific cellobiohydrolase (GH5_38): Its synergism with Cel6A and Cel7A for β-(1,3)-(1,4)-glucan degradation. Mafa MS; Malgas S; Rashamuse K; Pletschke BI Carbohydr Res; 2020 Sep; 495():108081. PubMed ID: 32738516 [TBL] [Abstract][Full Text] [Related]
17. Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement. Rabinovich ML; Melnik MS; Herner ML; Voznyi YV; Vasilchenko LG Biotechnol J; 2019 Mar; 14(3):e1700712. PubMed ID: 29781240 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis of cellulose by a mixture of Trichoderma reesei cellobiohydrolase and Aspergillus niger endoglucanase. Lee NE; Lima M; Woodward J Biochim Biophys Acta; 1988 Dec; 967(3):437-40. PubMed ID: 3196759 [TBL] [Abstract][Full Text] [Related]
20. Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello-oligosaccharides. Mattinen ML; Linder M; Drakenberg T; Annila A Eur J Biochem; 1998 Sep; 256(2):279-86. PubMed ID: 9760165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]