BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9662613)

  • 1. Metabolism of explosive compounds by sulfate-reducing bacteria.
    Boopathy R; Gurgas M; Ullian J; Manning JF
    Curr Microbiol; 1998 Aug; 37(2):127-31. PubMed ID: 9662613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34).
    Van Aken B; Yoon JM; Schnoor JL
    Appl Environ Microbiol; 2004 Jan; 70(1):508-17. PubMed ID: 14711682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen.
    Adrian NR; Arnett CM; Hickey RF
    Water Res; 2003 Aug; 37(14):3499-507. PubMed ID: 12834743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol.
    Adrian NR; Arnett CM
    Chemosphere; 2007 Jan; 66(10):1849-56. PubMed ID: 17095047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions.
    Zhao JS; Greer CW; Thiboutot S; Ampleman G; Hawari J
    Can J Microbiol; 2004 Feb; 50(2):91-6. PubMed ID: 15052310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: low-dose hormesis and high-dose mortality.
    Steevens JA; Duke BM; Lotufo GR; Bridges TS
    Environ Toxicol Chem; 2002 Jul; 21(7):1475-82. PubMed ID: 12109749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of cyclic nitramines by tropical marine sediment bacteria.
    Bhatt M; Zhao JS; Monteil-Rivera F; Hawari J
    J Ind Microbiol Biotechnol; 2005 Jun; 32(6):261-7. PubMed ID: 15915354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First production-level bioremediation of explosives-contaminated soil in the United States.
    Emery DD; Faessler PC
    Ann N Y Acad Sci; 1997 Nov; 829():326-40. PubMed ID: 9472327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil.
    Kitts CL; Cunningham DP; Unkefer PJ
    Appl Environ Microbiol; 1994 Dec; 60(12):4608-11. PubMed ID: 7811097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial degradation of explosives: biotransformation versus mineralization.
    Hawari J; Beaudet S; Halasz A; Thiboutot S; Ampleman G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):605-18. PubMed ID: 11131384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants.
    Park J; Comfort SD; Shea PJ; Machacek TA
    J Environ Qual; 2004; 33(4):1305-13. PubMed ID: 15254112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergetic toxic effect of an explosive material mixture in soil.
    Panz K; Miksch K; Sójka T
    Bull Environ Contam Toxicol; 2013 Nov; 91(5):555-9. PubMed ID: 24005241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution rates of three high explosive compounds: TNT, RDX, and HMX.
    Lynch JC; Brannon JM; Delfino JJ
    Chemosphere; 2002 May; 47(7):725-34. PubMed ID: 12079068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants.
    Panz K; Miksch K
    J Environ Manage; 2012 Dec; 113():85-92. PubMed ID: 22996005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fenton oxidation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).
    Zoh KD; Stenstrom MK
    Water Res; 2002 Mar; 36(5):1331-41. PubMed ID: 11902788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro.
    Lachance B; Robidoux PY; Hawari J; Ampleman G; Thiboutot S; Sunahara GI
    Mutat Res; 1999 Jul; 444(1):25-39. PubMed ID: 10477337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sketch of microbiological remediation of explosives-contaminated soil focused on state of art and the impact of technological advancement on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation.
    Aamir Khan M; Sharma A; Yadav S; Celin SM; Sharma S
    Chemosphere; 2022 May; 294():133641. PubMed ID: 35077733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on plant-mediated fate of the explosives RDX and HMX.
    Bhadra R; Wayment DG; Williams RK; Barman SN; Stone MB; Hughes JB; Shanks JV
    Chemosphere; 2001 Aug; 44(5):1259-64. PubMed ID: 11513416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor.
    Beller HR
    Water Res; 2002 May; 36(10):2533-40. PubMed ID: 12153019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.