These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 966264)

  • 1. 2-Deoxyglucose transport by intestinal epithelial cells isolated from the chick.
    Kimmich GA; Randles J
    J Membr Biol; 1976 Jun; 27(4):363-79. PubMed ID: 966264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of cellular cyclic AMP in theophylline-induced sugar accumulation in chicken intestinal epithelial cells.
    Moretó M; Planas JM; De Gabriel C; Santos FJ
    Biochim Biophys Acta; 1984 Mar; 771(1):68-73. PubMed ID: 6322846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sulphated glycopeptides on kinetics of 3-O-methyl glucose and 2-deoxyglucose transport by epithelial cells isolated from rabbit small intestine.
    Mian N; Anderson CE; Kent PW
    Eur J Biochem; 1979 Jun; 97(1):197-204. PubMed ID: 477667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of mutant renal (LLC-PK1) epithelia defective in basolateral, Na(+)-independent glucose transport.
    Mullin JM; Snock KV; McGinn MT; Kofeldt LM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1039-49. PubMed ID: 2603953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal transport: studies with isolated epithelial cells.
    Kimmich GA
    Environ Health Perspect; 1979 Dec; 33():37-44. PubMed ID: 540624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the serosal sugar carrier in isolated intestinal epithelial cells by saccharin.
    Kimmich GA; Randles J; Anderson RL
    Food Chem Toxicol; 1988; 26(11-12):927-34. PubMed ID: 3209132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triiodothyronine stimulates 2-deoxy-D-glucose uptake by organ cultured embryonic chick small intestine.
    Prager C; Cross HS; Peterlik M
    Acta Endocrinol (Copenh); 1990 May; 122(5):585-91. PubMed ID: 2353555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of K+ and K+ gradients on accumulation of sugars by isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1973; 12(1):23-46. PubMed ID: 4781065
    [No Abstract]   [Full Text] [Related]  

  • 11. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Deoxy-D-glucose transport in dog kidney.
    Silverman M; Turner RJ
    Am J Physiol; 1982 Jun; 242(6):F711-20. PubMed ID: 7091323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloretin-like action of bioflavonoids on sugar accumulation capability of isolated intestinal cells.
    Kimmich GA; Randles J
    Membr Biochem; 1978; 1(3-4):221-37. PubMed ID: 756489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexose transport and phosphorylation by capillaries isolated from rat brain.
    Betz AL; Csejtey J; Goldstein GW
    Am J Physiol; 1979 Jan; 236(1):C96-102. PubMed ID: 434144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between Na+-dependent transport systems for sugars and amino acids. Evidence against a role for the sodium gradient.
    Kimmich GA; Randles J
    J Membr Biol; 1973; 12(1):47-68. PubMed ID: 4781066
    [No Abstract]   [Full Text] [Related]  

  • 17. The Na+ gradient and D-galactose accumulation in epithelial cells of bullfrog small intestine.
    Armstrong WM; Byrd BJ; Hamang PM
    Biochim Biophys Acta; 1973 Dec; 330(2):237-41. PubMed ID: 4544239
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport of 2-deoxy-D-[3H]glucose in microvessels isolated from bovine cerebral cortex.
    Stefanovich V; Gojowczyk G
    Neurochem Res; 1981 Apr; 6(4):431-40. PubMed ID: 7266750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-transport of sugars in diabetes mellitus.
    Csaky TZ
    Prog Clin Biol Res; 1988; 258():37-42. PubMed ID: 3380823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.