These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 966292)
1. Criteria for optimising phylogenetic trees and the problem of determining the root of a tree. Penny D J Mol Evol; 1976 Aug; 8(2):95-116. PubMed ID: 966292 [TBL] [Abstract][Full Text] [Related]
2. A general approach to proving the minimality of phylogenetic trees illustrated by an example with a set of 23 vertebrates. Foulds LR; Penny D; Hendy MD J Mol Evol; 1979 Jul; 13(2):151-66. PubMed ID: 225499 [TBL] [Abstract][Full Text] [Related]
3. Tree-based unrooted nonbinary phylogenetic networks. Hendriksen M Math Biosci; 2018 Aug; 302():131-138. PubMed ID: 29932953 [TBL] [Abstract][Full Text] [Related]
4. Tree-based networks: characterisations, metrics, and support trees. Pons JC; Semple C; Steel M J Math Biol; 2019 Mar; 78(4):899-918. PubMed ID: 30283985 [TBL] [Abstract][Full Text] [Related]
5. A graph theoretic approach to the development of minimal phylogenetic trees. Foulds LR; Hendy MD; Penny D J Mol Evol; 1979 Jul; 13(2):127-49. PubMed ID: 480370 [TBL] [Abstract][Full Text] [Related]
6. On Unrooted and Root-Uncertain Variants of Several Well-Known Phylogenetic Network Problems. van Iersel L; Kelk S; Stamoulis G; Stougie L; Boes O Algorithmica; 2018; 80(11):2993-3022. PubMed ID: 30956378 [TBL] [Abstract][Full Text] [Related]
7. Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees. Baste J; Paul C; Sau I; Scornavacca C Bull Math Biol; 2017 Apr; 79(4):920-938. PubMed ID: 28247121 [TBL] [Abstract][Full Text] [Related]
8. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Russo CA; Takezaki N; Nei M Mol Biol Evol; 1996 Mar; 13(3):525-36. PubMed ID: 8742641 [TBL] [Abstract][Full Text] [Related]
10. Estimating the reliability of evolutionary trees. Penny D; Hendy M Mol Biol Evol; 1986 Sep; 3(5):403-17. PubMed ID: 2832694 [TBL] [Abstract][Full Text] [Related]
11. The most parsimonious tree for random data. Fischer M; Galla M; Herbst L; Steel M Mol Phylogenet Evol; 2014 Nov; 80():165-8. PubMed ID: 25079136 [TBL] [Abstract][Full Text] [Related]
12. Limitations of the evolutionary parsimony method of phylogenetic analysis. Jin L; Nei M Mol Biol Evol; 1990 Jan; 7(1):82-102. PubMed ID: 2299983 [TBL] [Abstract][Full Text] [Related]
13. Property and efficiency of the maximum likelihood method for molecular phylogeny. Saitou N J Mol Evol; 1988; 27(3):261-73. PubMed ID: 3138428 [TBL] [Abstract][Full Text] [Related]
18. Probability Steiner trees and maximum parsimony in phylogenetic analysis. Weng JF; Mareels I; Thomas DA J Math Biol; 2012 Jun; 64(7):1225-51. PubMed ID: 21706222 [TBL] [Abstract][Full Text] [Related]
19. On the quirks of maximum parsimony and likelihood on phylogenetic networks. Bryant C; Fischer M; Linz S; Semple C J Theor Biol; 2017 Mar; 417():100-108. PubMed ID: 28087420 [TBL] [Abstract][Full Text] [Related]
20. The effects of sequence length, tree topology, and number of taxa on the performance of phylogenetic methods. Charleston MA; Hendy MD; Penny D J Comput Biol; 1994; 1(2):133-51. PubMed ID: 8790460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]