These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 9663742)
21. Photoinduced immobilization of 2-methacryloyloxyethyl phosphorylcholine polymers with different molecular architectures on a poly(ether ether ketone) surface. Fukazawa K; Mu M; Chen SH; Ishihara K J Mater Chem B; 2022 Apr; 10(14):2699-2707. PubMed ID: 35113114 [TBL] [Abstract][Full Text] [Related]
22. Development of a ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane, 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate. Nishida K; Sakakida M; Ichinose K; Uemura T; Uehara M; Kajiwara K; Miyata T; Shichiri M; Ishihara K; Nakabayashi N Med Prog Technol; 1995 May; 21(2):91-103. PubMed ID: 7565400 [TBL] [Abstract][Full Text] [Related]
23. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
24. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Sibarani J; Takai M; Ishihara K Colloids Surf B Biointerfaces; 2007 Jan; 54(1):88-93. PubMed ID: 17112710 [TBL] [Abstract][Full Text] [Related]
26. Prevention of biofilm formation with a coating of 2-methacryloyloxyethyl phosphorylcholine polymer. Fujii K; Matsumoto HN; Koyama Y; Iwasaki Y; Ishihara K; Takakuda K J Vet Med Sci; 2008 Feb; 70(2):167-73. PubMed ID: 18319577 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Ishihara K; Hanyuda H; Nakabayashi N Biomaterials; 1995 Jul; 16(11):873-9. PubMed ID: 8527604 [TBL] [Abstract][Full Text] [Related]
28. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Nam K; Watanabe J; Ishihara K Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127 [TBL] [Abstract][Full Text] [Related]
29. Formation of Hydrophobic Domains on the poly(MPC- Katayama R; Ikeda M; Shiraishi K; Matsumoto A; Kojima C Langmuir; 2019 Sep; 35(37):12229-12235. PubMed ID: 30813727 [TBL] [Abstract][Full Text] [Related]
30. Selective adhesion of platelets on a polyion complex composed of phospholipid polymers containing sulfonate groups and quarternary ammonium groups. Ishihara K; Inoue H; Kurita K; Nakabayashi N J Biomed Mater Res; 1994 Nov; 28(11):1347-55. PubMed ID: 7829565 [TBL] [Abstract][Full Text] [Related]
31. A large mobility of hydrophilic molecules at the outmost layer controls the protein adsorption and adhering behavior with the actin fiber orientation of human umbilical vein endothelial cells (HUVEC). Kakinoki S; Seo JH; Inoue Y; Ishihara K; Yui N; Yamaoka T J Biomater Sci Polym Ed; 2013; 24(11):1320-32. PubMed ID: 23796033 [TBL] [Abstract][Full Text] [Related]
32. High lubricious surface of cobalt-chromium-molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine). Kyomoto M; Iwasaki Y; Moro T; Konno T; Miyaji F; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K Biomaterials; 2007 Jul; 28(20):3121-30. PubMed ID: 17416412 [TBL] [Abstract][Full Text] [Related]
33. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202 [TBL] [Abstract][Full Text] [Related]
34. Reduced protein adsorption on novel phospholipid polymers. Ishihara K; Iwasaki Y J Biomater Appl; 1998 Oct; 13(2):111-27. PubMed ID: 9777463 [TBL] [Abstract][Full Text] [Related]
35. Effects of mobility/immobility of surface modification by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints. Kyomoto M; Moro T; Miyaji F; Hashimoto M; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K J Biomed Mater Res A; 2009 Aug; 90(2):362-71. PubMed ID: 18521890 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and characterisation of phosphorylcholine-based polymers useful for coating blood filtration devices. Lewis AL; Hughes PD; Kirkwood LC; Leppard SW; Redman RP; Tolhurst LA; Stratford PW Biomaterials; 2000 Sep; 21(18):1847-59. PubMed ID: 10919688 [TBL] [Abstract][Full Text] [Related]
37. Decrease in skin permeation and antibacterial effect of parabens by a polymeric additive, poly(2-methacryloyloxyethyl phosphorylcholine-co-butylmetacrylate). Hasegawa T; Kim S; Tsuchida M; Issiki Y; Kondo S; Sugibayashi K Chem Pharm Bull (Tokyo); 2005 Mar; 53(3):271-6. PubMed ID: 15744096 [TBL] [Abstract][Full Text] [Related]
38. Surface modification on polyethylene terephthalate films with 2-methacryloyloxyethyl phosphorylcholine. Zheng Z; Ren L; Zhai Z; Wang Y; Hang F Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):3041-6. PubMed ID: 23623130 [TBL] [Abstract][Full Text] [Related]
39. Nanomechanical and tribological characterization of the MPC phospholipid polymer photografted onto rough polyethylene implants. Wang N; Trunfio-Sfarghiu AM; Portinha D; Descartes S; Fleury E; Berthier Y; Rieu JP Colloids Surf B Biointerfaces; 2013 Aug; 108():285-94. PubMed ID: 23563296 [TBL] [Abstract][Full Text] [Related]
40. Enhanced wear resistance of modified cross-linked polyethylene by grafting with poly(2-methacryloyloxyethyl phosphorylcholine). Kyomoto M; Moro T; Konno T; Takadama H; Yamawaki N; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K J Biomed Mater Res A; 2007 Jul; 82(1):10-7. PubMed ID: 17265442 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]