These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 9664280)
1. A comparative study on different methods of automatic mesh generation of human femurs. Viceconti M; Bellingeri L; Cristofolini L; Toni A Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280 [TBL] [Abstract][Full Text] [Related]
2. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur. Polgar K; Viceconti M; O'Connor JJ Proc Inst Mech Eng H; 2001; 215(1):85-94. PubMed ID: 11323989 [TBL] [Abstract][Full Text] [Related]
3. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Ramos A; Simões JA Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628 [TBL] [Abstract][Full Text] [Related]
4. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645 [TBL] [Abstract][Full Text] [Related]
5. A new method for the automatic mesh generation of bone segments from CT data. Viceconti M; Zannoni C; Testi D; Cappello A J Med Eng Technol; 1999; 23(2):77-81. PubMed ID: 10356679 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur. Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655 [TBL] [Abstract][Full Text] [Related]
7. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations. Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191 [TBL] [Abstract][Full Text] [Related]
8. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. Viceconti M; Davinelli M; Taddei F; Cappello A J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935 [TBL] [Abstract][Full Text] [Related]
9. A voxel-based finite element model for the prediction of bladder deformation. Chai X; van Herk M; Hulshof MC; Bel A Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275 [TBL] [Abstract][Full Text] [Related]
10. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study. Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242 [TBL] [Abstract][Full Text] [Related]
11. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model. Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347 [TBL] [Abstract][Full Text] [Related]
12. A comparative study on different methods of automatic mesh generation of human femurs. Medical Engineering and Physics 20 (1998): 1-10. Viceconti M Med Eng Phys; 2000 Jun; 22(5):379-80. PubMed ID: 11186609 [No Abstract] [Full Text] [Related]
13. High-quality mesh generation for human hip based on ideal element size: methods and evaluation. Wang M; Gao J; Wang X Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):212-220. PubMed ID: 29058486 [TBL] [Abstract][Full Text] [Related]
14. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures. Couteau B; Payan Y; Lavallée S J Biomech; 2000 Aug; 33(8):1005-9. PubMed ID: 10828331 [TBL] [Abstract][Full Text] [Related]
15. [Use of voxel-oriented femur models for stress analysis. Generation, calculation and validation of CT-based FEM models]. Schmitt J; Lengsfeld M; Alter P; Leppek R Biomed Tech (Berl); 1995 Jun; 40(6):175-81. PubMed ID: 7632871 [TBL] [Abstract][Full Text] [Related]
16. [Automatic generation of 3-D finite element codes of the human femur]. Lengsfeld M; Kaminsky J; Merz B; Franke RP Biomed Tech (Berl); 1994 May; 39(5):117-22. PubMed ID: 8049341 [TBL] [Abstract][Full Text] [Related]
18. A NURBS-based technique for subject-specific construction of knee bone geometry. Au AG; Palathinkal D; Liggins AB; Raso VJ; Carey J; Lambert RG; Amirfazli A Comput Methods Programs Biomed; 2008 Oct; 92(1):20-34. PubMed ID: 18644314 [TBL] [Abstract][Full Text] [Related]
19. 3-D femoral stress analysis using CT scans and p-version FEM. Basu PK; Beall AG; Simmons DJ; Vannier M Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):163-86. PubMed ID: 3841817 [TBL] [Abstract][Full Text] [Related]
20. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis. Verim Ö; Taşgetiren S; Er MS; Timur M; Yuran AF Int J Med Robot; 2013 Jun; 9(2):e19-24. PubMed ID: 22711421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]