These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9665177)

  • 1. NMR of modular proteins.
    Campbell ID; Downing AK
    Nat Struct Biol; 1998 Jul; 5 Suppl():496-9. PubMed ID: 9665177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR analysis of cbEGF domains gives new insights into the structural consequences of a P1148A substitution in fibrillin-1.
    Whiteman P; Downing AK; Handford PA
    Protein Eng; 1998 Nov; 11(11):957-9. PubMed ID: 9876915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A G1127S change in calcium-binding epidermal growth factor-like domain 13 of human fibrillin-1 causes short range conformational effects.
    Whiteman P; Smallridge RS; Knott V; Cordle JJ; Downing AK; Handford PA
    J Biol Chem; 2001 May; 276(20):17156-62. PubMed ID: 11278305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural consequences of cysteine substitutions C1977Y and C1977R in calcium-binding epidermal growth factor-like domain 30 of human fibrillin-1.
    Suk JY; Jensen S; McGettrick A; Willis AC; Whiteman P; Redfield C; Handford PA
    J Biol Chem; 2004 Dec; 279(49):51258-65. PubMed ID: 15371449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function.
    Kettle S; Yuan X; Grundy G; Knott V; Downing AK; Handford PA
    J Mol Biol; 1999 Jan; 285(3):1277-87. PubMed ID: 9887276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains.
    Cardy CM; Handford PA
    J Mol Biol; 1998 Mar; 276(5):855-60. PubMed ID: 9566191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence of the coding region of the bovine fibrillin cDNA and localization to bovine chromosome 10.
    Tilstra DJ; Li L; Potter KA; Womack J; Byers PH
    Genomics; 1994 Sep; 23(2):480-5. PubMed ID: 7835900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1.
    Smallridge RS; Whiteman P; Doering K; Handford PA; Downing AK
    J Mol Biol; 1999 Feb; 286(3):661-8. PubMed ID: 10024441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR studies of modular protein structures and their interactions.
    Pickford AR; Campbell ID
    Chem Rev; 2004 Aug; 104(8):3557-66. PubMed ID: 15303827
    [No Abstract]   [Full Text] [Related]  

  • 10. Ca2+-dependent interface formation in fibrillin-1.
    Jensen SA; Corbett AR; Knott V; Redfield C; Handford PA
    J Biol Chem; 2005 Apr; 280(14):14076-84. PubMed ID: 15649891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end.
    Corson GM; Chalberg SC; Dietz HC; Charbonneau NL; Sakai LY
    Genomics; 1993 Aug; 17(2):476-84. PubMed ID: 7691719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome.
    Kainulainen K; Karttunen L; Puhakka L; Sakai L; Peltonen L
    Nat Genet; 1994 Jan; 6(1):64-9. PubMed ID: 8136837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of the LDL receptor EGF-AB pair: a paradigm for the assembly of tandem calcium binding EGF domains.
    Saha S; Boyd J; Werner JM; Knott V; Handford PA; Campbell ID; Downing AK
    Structure; 2001 Jun; 9(6):451-6. PubMed ID: 11435110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape and dynamics of a calcium-binding protein investigated by nitrogen-15 NMR relaxation.
    Werner JM; Campbell ID; Downing AK
    Methods Mol Biol; 2002; 173():285-300. PubMed ID: 11859769
    [No Abstract]   [Full Text] [Related]  

  • 15. Silent mutation induces exon skipping of fibrillin-1 gene in Marfan syndrome.
    Liu W; Qian C; Francke U
    Nat Genet; 1997 Aug; 16(4):328-9. PubMed ID: 9241263
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of proline cis-trans isomerization on TB domain secondary structure.
    Yuan X; Werner JM; Knott V; Handford PA; Campbell ID; Downing K
    Protein Sci; 1998 Oct; 7(10):2127-35. PubMed ID: 9792099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular basis of Marfan syndrome.
    Maslen CL; Glanville RW
    DNA Cell Biol; 1993 Sep; 12(7):561-72. PubMed ID: 8397814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrillin-1: organization in microfibrils and structural properties.
    Reinhardt DP; Keene DR; Corson GM; Pöschl E; Bächinger HP; Gambee JE; Sakai LY
    J Mol Biol; 1996 Apr; 258(1):104-16. PubMed ID: 8613981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation screening of all 65 exons of the fibrillin-1 gene in 60 patients with Marfan syndrome: report of 12 novel mutations.
    Hayward C; Porteous ME; Brock DJ
    Hum Mutat; 1997; 10(4):280-9. PubMed ID: 9338581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome.
    Milewicz DM; Grossfield J; Cao SN; Kielty C; Covitz W; Jewett T
    J Clin Invest; 1995 May; 95(5):2373-8. PubMed ID: 7738200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.