These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 9665599)

  • 61. Inflammation-induced changes in rostral ventromedial medulla mu and kappa opioid receptor mediated antinociception.
    Schepers RJ; Mahoney JL; Shippenberg TS
    Pain; 2008 Jun; 136(3):320-330. PubMed ID: 17764840
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats.
    Pavlovic ZW; Bodnar RJ
    Brain Res; 1998 Jan; 779(1-2):158-69. PubMed ID: 9473650
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Endogenous opioid-mediated inhibition of putative pain-modulating neurons in rat rostral ventromedial medulla.
    Pan ZZ; Fields HL
    Neuroscience; 1996 Oct; 74(3):855-62. PubMed ID: 8884781
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Switching from morphine to fentanyl attenuates the decline of µ-opioid receptor expression in periaqueductal gray of rats with morphine tolerance.
    Dong YP; Sun L; Liu XY; Liu RS
    Chin Med J (Engl); 2013; 126(19):3712-6. PubMed ID: 24112169
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Blockade of mu- and activation of kappa-opioid receptors in the dorsal periaqueductal gray matter produce defensive behavior in rats tested in the elevated plus-maze.
    Nobre MJ; Ribeiro dos Santos N; Aguiar MS; Brandão ML
    Eur J Pharmacol; 2000 Sep; 404(1-2):145-51. PubMed ID: 10980273
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Serotonergic and GABAergic neurons in the medial rostral ventral medulla express kappa-opioid receptor immunoreactivity.
    Kalyuzhny AE; Wessendorf MW
    Neuroscience; 1999 Apr; 90(1):229-34. PubMed ID: 10188949
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Opioid receptor modulation of GABAergic and serotonergic spinally projecting neurons of the rostral ventromedial medulla in mice.
    Pedersen NP; Vaughan CW; Christie MJ
    J Neurophysiol; 2011 Aug; 106(2):731-40. PubMed ID: 21593395
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A subset of μ-opioid receptor-expressing cells in the rostral ventromedial medulla contribute to thermal hyperalgesia in experimental neuropathic pain.
    Mase H; Sakai A; Sakamoto A; Suzuki H
    Neurosci Res; 2011 May; 70(1):35-43. PubMed ID: 21238509
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Chronic sucrose intake augments antinociception induced by injections of mu but not kappa opioid receptor agonists into the periaqueductal gray matter in male and female rats.
    Kanarek RB; Mandillo S; Wiatr C
    Brain Res; 2001 Nov; 920(1-2):97-105. PubMed ID: 11716815
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Endogenous opioid peptides in the descending pain modulatory circuit.
    Bagley EE; Ingram SL
    Neuropharmacology; 2020 Aug; 173():108131. PubMed ID: 32422213
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cardiovascular effects of microinjections of opioid agonists into the 'Depressor Region' of the ventrolateral periaqueductal gray region.
    Keay KA; Crowfoot LJ; Floyd NS; Henderson LA; Christie MJ; Bandler R
    Brain Res; 1997 Jul; 762(1-2):61-71. PubMed ID: 9262159
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Origins of endomorphin-immunoreactive fibers and terminals in different columns of the periaqueductal gray in the rat.
    Chen T; Hui R; Wang XL; Zhang T; Dong YX; Li YQ
    J Comp Neurol; 2008 Jul; 509(1):72-87. PubMed ID: 18421704
    [TBL] [Abstract][Full Text] [Related]  

  • 73. G-Protein-Coupled Estrogen Receptor (GPER) in the Rostral Ventromedial Medulla Is Essential for Mobilizing Descending Inhibition of Itch.
    Gao T; Dong L; Qian J; Ding X; Zheng Y; Wu M; Meng L; Jiao Y; Gao P; Luo P; Zhang G; Wu C; Shi X; Rong W
    J Neurosci; 2021 Sep; 41(37):7727-7741. PubMed ID: 34349001
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Periaqueductal gray metabotropic glutamate receptor subtype 7 and 8 mediate opposite effects on amino acid release, rostral ventromedial medulla cell activities, and thermal nociception.
    Marabese I; Rossi F; Palazzo E; de Novellis V; Starowicz K; Cristino L; Vita D; Gatta L; Guida F; Di Marzo V; Rossi F; Maione S
    J Neurophysiol; 2007 Jul; 98(1):43-53. PubMed ID: 17507496
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique.
    Jensen TS; Yaksh TL
    Brain Res; 1986 May; 372(2):301-12. PubMed ID: 2871901
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study.
    Peckys D; Landwehrmeyer GB
    Neuroscience; 1999; 88(4):1093-135. PubMed ID: 10336124
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception.
    Meng ID; Johansen JP; Harasawa I; Fields HL
    J Neurophysiol; 2005 Mar; 93(3):1138-44. PubMed ID: 15456805
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sex differences in the amygdaloid projections to the ventrolateral periaqueductal gray and their activation during inflammatory pain in the rat.
    Cantu DJ; Kaur S; Murphy AZ; Averitt DL
    J Chem Neuroanat; 2022 Oct; 124():102123. PubMed ID: 35738454
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The role of mu and kappa opioid receptors within the periaqueductal gray in the expression of conditional hypoalgesia.
    Bellgowan PS; Helmstetter FJ
    Brain Res; 1998 Apr; 791(1-2):83-9. PubMed ID: 9593835
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mu and kappa opioid receptors of the periaqueductal gray stimulate and inhibit thermogenesis, respectively, during psychological stress in rats.
    Cristina-Silva C; Martins V; Gargaglioni LH; Bícego KC
    Pflugers Arch; 2017 Sep; 469(9):1151-1161. PubMed ID: 28374069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.