These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 9665690)
1. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Pereira AS; Small W; Krebs C; Tavares P; Edmondson DE; Theil EC; Huynh BH Biochemistry; 1998 Jul; 37(28):9871-6. PubMed ID: 9665690 [TBL] [Abstract][Full Text] [Related]
2. The ferroxidase reaction of ferritin reveals a diferric mu-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins. Moënne-Loccoz P; Krebs C; Herlihy K; Edmondson DE; Theil EC; Huynh BH; Loehr TM Biochemistry; 1999 Apr; 38(17):5290-5. PubMed ID: 10220314 [TBL] [Abstract][Full Text] [Related]
4. Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization. Pereira AS; Tavares P; Lloyd SG; Danger D; Edmondson DE; Theil EC; Huynh BH Biochemistry; 1997 Jun; 36(25):7917-27. PubMed ID: 9201937 [TBL] [Abstract][Full Text] [Related]
5. mu-1,2-peroxo diferric complex formation in horse spleen ferritin. A mixed H/L-subunit heteropolymer. Zhao G; Su M; Chasteen ND J Mol Biol; 2005 Sep; 352(2):467-77. PubMed ID: 16095616 [TBL] [Abstract][Full Text] [Related]
6. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase. Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179 [TBL] [Abstract][Full Text] [Related]
7. Origin of the unusual kinetics of iron deposition in human H-chain ferritin. Bou-Abdallah F; Zhao G; Mayne HR; Arosio P; Chasteen ND J Am Chem Soc; 2005 Mar; 127(11):3885-93. PubMed ID: 15771525 [TBL] [Abstract][Full Text] [Related]
8. Computational study of iron(II) and -(III) complexes with a simple model human H ferritin ferroxidase center. Bacelo DE; Binning RC Inorg Chem; 2006 Dec; 45(25):10263-9. PubMed ID: 17140234 [TBL] [Abstract][Full Text] [Related]
9. Demonstration of peroxodiferric intermediate in M-ferritin ferroxidase reaction using rapid freeze-quench Mössbauer, resonance Raman, and XAS spectroscopies. Krebs C; Edmondson DE; Huynh BH Methods Enzymol; 2002; 354():436-54. PubMed ID: 12418245 [No Abstract] [Full Text] [Related]
10. (Mu-1,2-peroxo)diiron(III/III) complex as a precursor to the diiron(III/IV) intermediate X in the assembly of the iron-radical cofactor of ribonucleotide reductase from mouse. Yun D; García-Serres R; Chicalese BM; An YH; Huynh BH; Bollinger JM Biochemistry; 2007 Feb; 46(7):1925-32. PubMed ID: 17256972 [TBL] [Abstract][Full Text] [Related]
11. Stages in iron storage in the ferritin of Escherichia coli (EcFtnA): analysis of Mössbauer spectra reveals a new intermediate. Bauminger ER; Treffry A; Quail MA; Zhao Z; Nowik I; Harrison PM Biochemistry; 1999 Jun; 38(24):7791-802. PubMed ID: 10387019 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic evidence for the presence of a high-valent Fe(IV) species in the ferroxidase reaction of an archaeal ferritin. Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR FEBS Lett; 2017 Jun; 591(12):1712-1719. PubMed ID: 28542723 [TBL] [Abstract][Full Text] [Related]
13. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III). Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612 [TBL] [Abstract][Full Text] [Related]
14. Stoichiometric production of hydrogen peroxide and parallel formation of ferric multimers through decay of the diferric-peroxo complex, the first detectable intermediate in ferritin mineralization. Jameson GN; Jin W; Krebs C; Perreira AS; Tavares P; Liu X; Theil EC; Huynh BH Biochemistry; 2002 Nov; 41(45):13435-43. PubMed ID: 12416989 [TBL] [Abstract][Full Text] [Related]
15. Reactions of nitric oxide with the reduced non-heme diiron center of the soluble methane monooxygenase hydroxylase. Coufal DE; Tavares P; Pereira AS; Hyunh BH; Lippard SJ Biochemistry; 1999 Apr; 38(14):4504-13. PubMed ID: 10194372 [TBL] [Abstract][Full Text] [Related]
16. The putative "nucleation site" in human H-chain ferritin is not required for mineralization of the iron core. Bou-Abdallah F; Biasiotto G; Arosio P; Chasteen ND Biochemistry; 2004 Apr; 43(14):4332-7. PubMed ID: 15065877 [TBL] [Abstract][Full Text] [Related]
17. Mineralization in ferritin: an efficient means of iron storage. Chasteen ND; Harrison PM J Struct Biol; 1999 Jun; 126(3):182-94. PubMed ID: 10441528 [TBL] [Abstract][Full Text] [Related]
18. Kinetic studies of iron deposition catalyzed by recombinant human liver heavy and light ferritins and Azotobacter vinelandii bacterioferritin using O2 and H2O2 as oxidants. Bunker J; Lowry T; Davis G; Zhang B; Brosnahan D; Lindsay S; Costen R; Choi S; Arosio P; Watt GD Biophys Chem; 2005 Apr; 114(2-3):235-44. PubMed ID: 15829358 [TBL] [Abstract][Full Text] [Related]
19. Core formation in Escherichia coli bacterioferritin requires a functional ferroxidase center. Baaghil S; Lewin A; Moore GR; Le Brun NE Biochemistry; 2003 Dec; 42(47):14047-56. PubMed ID: 14636073 [TBL] [Abstract][Full Text] [Related]
20. The dinuclear iron-oxo ferroxidase center of Pyrococcus furiosus ferritin is a stable prosthetic group with unexpectedly high reduction potentials. Tatur J; Hagen WR FEBS Lett; 2005 Aug; 579(21):4729-32. PubMed ID: 16107254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]