These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9665693)

  • 1. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1998 Jul; 37(28):9889-93. PubMed ID: 9665693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227.
    Imasheva ES; Balashov SP; Wang JM; Dioumaev AK; Lanyi JK
    Biochemistry; 2004 Feb; 43(6):1648-55. PubMed ID: 14769042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K.
    Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP
    Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning of retinal twisting in bacteriorhodopsin controls the directionality of the early photocycle steps.
    Bondar AN; Fischer S; Suhai S; Smith JC
    J Phys Chem B; 2005 Aug; 109(31):14786-8. PubMed ID: 16852870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the 13-cis isomer of bacteriorhodopsin in the dark-adapted state.
    Nishikawa T; Murakami M; Kouyama T
    J Mol Biol; 2005 Sep; 352(2):319-28. PubMed ID: 16084526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural change of threonine 89 upon photoisomerization in bacteriorhodopsin as revealed by polarized FTIR spectroscopy.
    Kandori H; Kinoshita N; Yamazaki Y; Maeda A; Shichida Y; Needleman R; Lanyi JK; Bizounok M; Herzfeld J; Raap J; Lugtenburg J
    Biochemistry; 1999 Jul; 38(30):9676-83. PubMed ID: 10423246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local and distant protein structural changes on photoisomerization of the retinal in bacteriorhodopsin.
    Kandori H; Kinoshita N; Yamazaki Y; Maeda A; Shichida Y; Needleman R; Lanyi JK; Bizounok M; Herzfeld J; Raap J; Lugtenburg J
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4643-8. PubMed ID: 10758159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle.
    Weidlich O; Schalt B; Friedman N; Sheves M; Lanyi JK; Brown LS; Siebert F
    Biochemistry; 1996 Aug; 35(33):10807-14. PubMed ID: 8718872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization.
    Herbst J; Heyne K; Diller R
    Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved FT-IR spectroscopic investigation of the pH-dependent proton transfer reactions in the E194Q mutant of bacteriorhodopsin.
    Zscherp C; Schlesinger R; Heberle J
    Biochem Biophys Res Commun; 2001 Apr; 283(1):57-63. PubMed ID: 11322767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of bacteriorhodopsin from the apoprotein and retinal studied by Fourier-transform infrared spectroscopy.
    Rüdiger M; Tittor J; Gerwert K; Oesterhelt D
    Biochemistry; 1997 Apr; 36(16):4867-74. PubMed ID: 9125507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 2001 Sep; 40(38):11308-17. PubMed ID: 11560478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation.
    Hatanaka M; Kashima R; Kandori H; Friedman N; Sheves M; Needleman R; Lanyi JK; Maeda A
    Biochemistry; 1997 May; 36(18):5493-8. PubMed ID: 9154932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding structure and function in the light-driven proton pump bacteriorhodopsin.
    Lanyi JK
    J Struct Biol; 1998 Dec; 124(2-3):164-78. PubMed ID: 10049804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.