BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

747 related articles for article (PubMed ID: 9665699)

  • 21. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode.
    Bosenbeck M; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1992 Jan; 61(1):31-41. PubMed ID: 1540697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin.
    Chan NL; Kavanaugh JS; Rogers PH; Arnone A
    Biochemistry; 2004 Jan; 43(1):118-32. PubMed ID: 14705937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New light on allostery: dynamic resonance Raman spectroscopy of hemoglobin kempsey.
    Hu X; Rodgers KR; Mukerji I; Spiro TG
    Biochemistry; 1999 Mar; 38(12):3462-7. PubMed ID: 10090732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solution NMR study of the structural basis of the Bohr effect in the monomeric hemoglobins from Chironomus thummi thummi.
    Zhang W; Gersonde K; La Mar GN
    Biochemistry; 1997 Feb; 36(7):1689-98. PubMed ID: 9048552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutations of the betaN102 residue of HbA not only inhibit the ligand-linked T to Re state transition, but also profoundly affect the properties of the T state itself.
    Kwiatkowski LD; Hui HL; Karasik E; Colby JE; Noble RW
    Biochemistry; 2007 Feb; 46(7):2037-49. PubMed ID: 17253771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy.
    Jin Y; Nagai M; Nagai Y; Nagatomo S; Kitagawa T
    Biochemistry; 2004 Jul; 43(26):8517-27. PubMed ID: 15222763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quaternary structure of carbonmonoxyhemoglobins in solution: structural changes induced by the allosteric effector inositol hexaphosphate.
    Gong Q; Simplaceanu V; Lukin JA; Giovannelli JL; Ho NT; Ho C
    Biochemistry; 2006 Apr; 45(16):5140-8. PubMed ID: 16618103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraviolet resonance Raman studies of quaternary structure of hemoglobin using a tryptophan beta 37 mutant.
    Nagai M; Kaminaka S; Ohba Y; Nagai Y; Mizutani Y; Kitagawa T
    J Biol Chem; 1995 Jan; 270(4):1636-42. PubMed ID: 7829496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fourier transform infrared evidence against Asp beta 99 protonation in hemoglobin: nature of the Tyr alpha 42-Asp beta 99 quaternary H-bond.
    Hu X; Dick LA; Spiro TG
    Biochemistry; 1998 Jun; 37(26):9445-8. PubMed ID: 9649327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and kinetic characterization of a series of betaW37 variants of human hemoglobin A: evidence for high-affinity T quaternary structures.
    Kwiatkowski LD; Hui HL; Wierzba A; Noble RW; Walder RY; Peterson ES; Sligar SG; Sanders KE
    Biochemistry; 1998 Mar; 37(13):4325-35. PubMed ID: 9521753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of R- and T-state hemoglobin Bassett: elucidating the structural basis for the low oxygen affinity of a mutant hemoglobin.
    Safo MK; Abdulmalik O; Lin HR; Asakura T; Abraham DJ
    Acta Crystallogr D Biol Crystallogr; 2005 Feb; 61(Pt 2):156-62. PubMed ID: 15681866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The apolar distal histidine mutant (His69-->Val) of the homodimeric Scapharca hemoglobin is in an R-like conformation.
    Guarrera L; Colotti G; Boffi A; Chiancone E; Das TK; Rousseau DL; Gibson QH
    Biochemistry; 1998 Apr; 37(16):5608-15. PubMed ID: 9548946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at beta 93 cysteine.
    Cheng Y; Shen TJ; Simplaceanu V; Ho C
    Biochemistry; 2002 Oct; 41(39):11901-13. PubMed ID: 12269835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the hemoglobin switchpoint with cyanomet valency hybrids: Raman spectroscopic probes of tertiary and quaternary structure.
    Mukerji I; Spiro TG
    Biochemistry; 1994 Nov; 33(44):13132-9. PubMed ID: 7947719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosteric mechanism of haemoglobin: rupture of salt-bridges raises the oxygen affinity of the T-structure.
    Bettati S; Mozzarelli A; Perutz MF
    J Mol Biol; 1998 Aug; 281(4):581-5. PubMed ID: 9710531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-resolution crystal structure of magnesium (MgII)-iron (FeII) hybrid hemoglobin with liganded beta subunits.
    Park SY; Nakagawa A; Morimoto H
    J Mol Biol; 1996 Feb; 255(5):726-34. PubMed ID: 8636974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study.
    Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T
    Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.