These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
842 related articles for article (PubMed ID: 9665720)
41. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM; Grindley ND; Joyce CM Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324 [TBL] [Abstract][Full Text] [Related]
42. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding. Saturno J; Lázaro JM; Esteban FJ; Blanco L; Salas M J Mol Biol; 1997 Jun; 269(3):313-25. PubMed ID: 9199402 [TBL] [Abstract][Full Text] [Related]
44. Domain organization and DNA-induced conformational changes of an archaeal family B DNA polymerase. Pisani FM; Manco G; Carratore V; Rossi M Biochemistry; 1996 Jul; 35(28):9158-66. PubMed ID: 8703921 [TBL] [Abstract][Full Text] [Related]
45. Ultrafast fluorescence decay profiles reveal differential unstacking of 2-aminopurine from neighboring bases in single-stranded DNA-binding protein subsites. Nguyen HN; Zhao L; Gray CW; Gray DM; Xia T Biochemistry; 2011 Oct; 50(42):8989-9001. PubMed ID: 21916413 [TBL] [Abstract][Full Text] [Related]
46. An invariant lysine residue is involved in catalysis at the 3'-5' exonuclease active site of eukaryotic-type DNA polymerases. de Vega M; Ilyina T; Lázaro JM; Salas M; Blanco L J Mol Biol; 1997 Jul; 270(1):65-78. PubMed ID: 9231901 [TBL] [Abstract][Full Text] [Related]
47. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp. Young MC; Weitzel SE; von Hippel PH J Mol Biol; 1996 Dec; 264(3):440-52. PubMed ID: 8969296 [TBL] [Abstract][Full Text] [Related]
48. A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase. Xie P J Theor Biol; 2009 Aug; 259(3):434-9. PubMed ID: 19389410 [TBL] [Abstract][Full Text] [Related]
49. DNA binding properties of human DNA polymerase eta: implications for fidelity and polymerase switching of translesion synthesis. Kusumoto R; Masutani C; Shimmyo S; Iwai S; Hanaoka F Genes Cells; 2004 Dec; 9(12):1139-50. PubMed ID: 15569147 [TBL] [Abstract][Full Text] [Related]
50. Dissociation of bacteriophage T4 DNA polymerase and its processivity clamp after completion of Okazaki fragment synthesis. Carver TE; Sexton DJ; Benkovic SJ Biochemistry; 1997 Nov; 36(47):14409-17. PubMed ID: 9398159 [TBL] [Abstract][Full Text] [Related]
51. Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3'-->5'-exonuclease activity. Reha-Krantz LJ; Nonay RL J Biol Chem; 1993 Dec; 268(36):27100-8. PubMed ID: 8262948 [TBL] [Abstract][Full Text] [Related]
52. Human DNA polymerase epsilon: enzymologic mechanism and gap-filling synthesis. Mozzherin DJ; Fisher PA Biochemistry; 1996 Mar; 35(11):3572-7. PubMed ID: 8639508 [TBL] [Abstract][Full Text] [Related]
53. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Kaushik N; Pandey VN; Modak MJ Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555 [TBL] [Abstract][Full Text] [Related]
54. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases. Datta K; Johnson NP; LiCata VJ; von Hippel PH J Biol Chem; 2009 Jun; 284(25):17180-17193. PubMed ID: 19411253 [TBL] [Abstract][Full Text] [Related]
55. Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family. Hogg M; Aller P; Konigsberg W; Wallace SS; Doublié S J Biol Chem; 2007 Jan; 282(2):1432-44. PubMed ID: 17098747 [TBL] [Abstract][Full Text] [Related]
56. The use of 2-aminopurine fluorescence to study DNA polymerase function. Reha-Krantz LJ Methods Mol Biol; 2009; 521():381-96. PubMed ID: 19563118 [TBL] [Abstract][Full Text] [Related]
57. An alternative clamp loading pathway via the T4 clamp loader gp44/62-DNA complex. Zhuang Z; Berdis AJ; Benkovic SJ Biochemistry; 2006 Jul; 45(26):7976-89. PubMed ID: 16800623 [TBL] [Abstract][Full Text] [Related]
58. Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Wang J; Yu P; Lin TC; Konigsberg WH; Steitz TA Biochemistry; 1996 Jun; 35(25):8110-9. PubMed ID: 8679562 [TBL] [Abstract][Full Text] [Related]
59. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli. Brautigam CA; Sun S; Piccirilli JA; Steitz TA Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810 [TBL] [Abstract][Full Text] [Related]
60. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. Ding J; Das K; Hsiou Y; Sarafianos SG; Clark AD; Jacobo-Molina A; Tantillo C; Hughes SH; Arnold E J Mol Biol; 1998 Dec; 284(4):1095-111. PubMed ID: 9837729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]