BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9665738)

  • 1. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin.
    Dillet V; Dyson HJ; Bashford D
    Biochemistry; 1998 Jul; 37(28):10298-306. PubMed ID: 9665738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionization equilibria for side-chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NF kappa B.
    Qin J; Clore GM; Gronenborn AM
    Biochemistry; 1996 Jan; 35(1):7-13. PubMed ID: 8555200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli thioredoxin inhibition by cadmium: two mutually exclusive binding sites involving Cys32 and Asp26.
    Rollin-Genetet F; Berthomieu C; Davin AH; Quéméneur E
    Eur J Biochem; 2004 Apr; 271(7):1299-309. PubMed ID: 15030480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic pKa values of Escherichia coli thioredoxin.
    Chivers PT; Prehoda KE; Volkman BF; Kim BM; Markley JL; Raines RT
    Biochemistry; 1997 Dec; 36(48):14985-91. PubMed ID: 9398223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of the aspartic acid 26 pKa for reduced Escherichia coli thioredoxin by 13C NMR.
    Jeng MF; Dyson HJ
    Biochemistry; 1996 Jan; 35(1):1-6. PubMed ID: 8555161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartic acid 26 in reduced Escherichia coli thioredoxin has a pKa > 9.
    Wilson NA; Barbar E; Fuchs JA; Woodward C
    Biochemistry; 1995 Jul; 34(28):8931-9. PubMed ID: 7619792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General acid/base catalysis in the active site of Escherichia coli thioredoxin.
    Chivers PT; Raines RT
    Biochemistry; 1997 Dec; 36(50):15810-6. PubMed ID: 9398311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pKa measurements from nuclear magnetic resonance for the B1 and B2 immunoglobulin G-binding domains of protein G: comparison with calculated values for nuclear magnetic resonance and X-ray structures.
    Khare D; Alexander P; Antosiewicz J; Bryan P; Gilson M; Orban J
    Biochemistry; 1997 Mar; 36(12):3580-9. PubMed ID: 9132009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of reduced DsbA from Escherichia coli in solution.
    Schirra HJ; Renner C; Czisch M; Huber-Wunderlich M; Holak TA; Glockshuber R
    Biochemistry; 1998 May; 37(18):6263-76. PubMed ID: 9572841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations.
    Gane PJ; Freedman RB; Warwicker J
    J Mol Biol; 1995 Jun; 249(2):376-87. PubMed ID: 7783200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models.
    Simonson T; Carlsson J; Case DA
    J Am Chem Soc; 2004 Apr; 126(13):4167-80. PubMed ID: 15053606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the pKa values of active-center cysteines, cysteines-32 and -35, in Escherichia coli thioredoxin by Raman spectroscopy.
    Li H; Hanson C; Fuchs JA; Woodward C; Thomas GJ
    Biochemistry; 1993 Jun; 32(22):5800-8. PubMed ID: 8099293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How consistent are molecular dynamics simulations? Comparing structure and dynamics in reduced and oxidized Escherichia coli thioredoxin.
    Elofsson A; Nilsson L
    J Mol Biol; 1993 Oct; 233(4):766-80. PubMed ID: 8411178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin.
    Takahashi N; Creighton TE
    Biochemistry; 1996 Jun; 35(25):8342-53. PubMed ID: 8679592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the unusual protonation properties of the active site cysteines in thioredoxin.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Phys Chem B; 2006 Mar; 110(11):5758-61. PubMed ID: 16539521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.