These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

727 related articles for article (PubMed ID: 9665845)

  • 1. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ; Hunter CA
    J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-dependent DNA structure: tetranucleotide conformational maps.
    Packer MJ; Dauncey MP; Hunter CA
    J Mol Biol; 2000 Jan; 295(1):85-103. PubMed ID: 10623510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-dependent DNA structure: dinucleotide conformational maps.
    Packer MJ; Dauncey MP; Hunter CA
    J Mol Biol; 2000 Jan; 295(1):71-83. PubMed ID: 10623509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures.
    Hunter CA; Lu XJ
    J Mol Biol; 1997 Feb; 265(5):603-19. PubMed ID: 9048952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of atomic structure from sequence for double helical DNA oligomers.
    Farwer J; Packer MJ; Hunter CA
    Biopolymers; 2006 Jan; 81(1):51-61. PubMed ID: 16184626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence preference for BI/BII conformations in DNA: MD and crystal structure data analysis.
    Madhumalar A; Bansal M
    J Biomol Struct Dyn; 2005 Aug; 23(1):13-27. PubMed ID: 15918673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-dependent DNA structure. The role of base stacking interactions.
    Hunter CA
    J Mol Biol; 1993 Apr; 230(3):1025-54. PubMed ID: 8478917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states.
    Djuranovic D; Hartmann B
    J Biomol Struct Dyn; 2003 Jun; 20(6):771-88. PubMed ID: 12744707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural features of B-DNA dodecamer crystal structures: influence of crystal packing versus base sequence.
    Ghosh A; Bansal M
    Indian J Biochem Biophys; 2001; 38(1-2):7-15. PubMed ID: 11563334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The solution conformation of a carbocyclic analog of the Dickerson-Drew dodecamer: comparison with its own X-ray structure and that of the NMR structure of the native counterpart.
    Denisov AY; Zamaratski EV; Maltseva TV; Sandström A; Bekiroglu S; Altmann KH; Egli M; Chattopadhyaya J
    J Biomol Struct Dyn; 1998 Dec; 16(3):547-68. PubMed ID: 10052613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of DNA structure to internal dynamics: correlation of helical parameters from NOE-based NMR solution structures of d(GCGTACGC)(2) and d(CGCTAGCG)(2) with (13)C order parameters implies conformational coupling in dinucleotide units.
    Isaacs RJ; Spielmann HP
    J Mol Biol; 2001 Mar; 307(2):525-40. PubMed ID: 11254380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hairpin loops consisting of single adenine residues closed by sheared A.A and G.G pairs formed by the DNA triplets AAA and GAG: solution structure of the d(GTACAAAGTAC) hairpin.
    Chou SH; Zhu L; Gao Z; Cheng JW; Reid BR
    J Mol Biol; 1996 Dec; 264(5):981-1001. PubMed ID: 9000625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-specific local structural variations in solution structures of d(CGXX'CG)2 and d(CAXX'TG)2 self-complementary deoxyribonucleic acids.
    Lam SL; Au-Yeung SC
    J Mol Biol; 1997 Mar; 266(4):745-60. PubMed ID: 9102467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The assessment of the geometry of dinucleotide steps in double-helical DNA; a new local calculation scheme.
    el Hassan MA; Calladine CR
    J Mol Biol; 1995 Sep; 251(5):648-64. PubMed ID: 7666417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure determination and analysis of helix parameters in the DNA decamer d(CATGGCCATG)2 comparison of results from NMR and crystallography.
    Dornberger U; Flemming J; Fritzsche H
    J Mol Biol; 1998 Dec; 284(5):1453-63. PubMed ID: 9878363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The post-SCF quantum chemistry characteristics of the guanine-guanine stacking B-DNA.
    Cysewski P; Czyznikowska Z; Zaleśny R; Czeleń P
    Phys Chem Chem Phys; 2008 May; 10(19):2665-72. PubMed ID: 18464981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.
    Mukherjee S; Kailasam S; Bansal M; Bhattacharyya D
    Biopolymers; 2014 Jan; 101(1):107-20. PubMed ID: 23722519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.