BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9666512)

  • 1. Acetylation and phosphorylation of the carboxy-terminal domain of p53: regulative significance.
    Chiarugi V; Cinelli M; Magnelli L
    Oncol Res; 1998; 10(2):55-7. PubMed ID: 9666512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the specific DNA binding activity of Xenopus laevis p53: evidence for conserved regulation through the carboxy-terminus of the protein.
    Bessard AC; Garay E; Lacronique V; Legros Y; Demarquay C; Houque A; Portefaix JM; Granier C; Soussi T
    Oncogene; 1998 Feb; 16(7):883-90. PubMed ID: 9484779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of sequence-specific DNA-dependent acetylation of p53: the acetylation motif is exposed upon DNA binding.
    Cesková P; Chichger H; Wallace M; Vojtesek B; Hupp TR
    J Mol Biol; 2006 Mar; 357(2):442-56. PubMed ID: 16438982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of binding of DNA to the C-terminal domain of p53 by acetylation.
    Friedler A; Veprintsev DB; Freund SM; von Glos KI; Fersht AR
    Structure; 2005 Apr; 13(4):629-36. PubMed ID: 15837201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops.
    Stros M; Muselíková-Polanská E; Pospísilová S; Strauss F
    Biochemistry; 2004 Jun; 43(22):7215-25. PubMed ID: 15170359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the human p53 core domain in the absence of DNA.
    Wang Y; Rosengarth A; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage.
    Di Stefano V; Soddu S; Sacchi A; D'Orazi G
    Oncogene; 2005 Aug; 24(35):5431-42. PubMed ID: 15897882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The DNA binding regulatory domain of p53: see the C.
    Wolkowicz R; Rotter V
    Pathol Biol (Paris); 1997 Dec; 45(10):785-96. PubMed ID: 9769942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How phosphorylation regulates the activity of p53.
    Steegenga WT; van der Eb AJ; Jochemsen AG
    J Mol Biol; 1996 Oct; 263(2):103-13. PubMed ID: 8913292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation regulates the interaction and complex formation between wt p53 protein and PARP-1.
    Wesierska-Gadek J; Wojciechowski J; Schmid G
    J Cell Biochem; 2003 Aug; 89(6):1260-84. PubMed ID: 12898523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53.
    van Dieck J; Teufel DP; Jaulent AM; Fernandez-Fernandez MR; Rutherford TJ; Wyslouch-Cieszynska A; Fersht AR
    J Mol Biol; 2009 Dec; 394(5):922-30. PubMed ID: 19819244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53.
    Kim E; Albrechtsen N; Deppert W
    Oncogene; 1997 Aug; 15(7):857-69. PubMed ID: 9266973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein interactions at the carboxyl terminus of p53 result in the induction of its in vitro transactivation potential.
    Mundt M; Hupp T; Fritsche M; Merkle C; Hansen S; Lane D; Groner B
    Oncogene; 1997 Jul; 15(2):237-44. PubMed ID: 9244359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fmoc-based chemical synthesis and selective binding to supercoiled DNA of the p53 C-terminal segment and its phosphorylated and acetylated derivatives.
    Teruya K; Murphy AC; Burlin T; Appella E; Mazur SJ
    J Pept Sci; 2004 Aug; 10(8):479-93. PubMed ID: 15347136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoter-specific p53-dependent histone acetylation following DNA damage.
    Kaeser MD; Iggo RD
    Oncogene; 2004 May; 23(22):4007-13. PubMed ID: 15007388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex.
    Nourani A; Doyon Y; Utley RT; Allard S; Lane WS; Côté J
    Mol Cell Biol; 2001 Nov; 21(22):7629-40. PubMed ID: 11604499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site.
    Blaydes JP; Hupp TR
    Oncogene; 1998 Aug; 17(8):1045-52. PubMed ID: 9747884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of cisplatin-damaged DNA by p53 protein: critical role of the p53 C-terminal domain.
    Pivonková H; Brázdová M; Kaspárková J; Brabec V; Fojta M
    Biochem Biophys Res Commun; 2006 Jan; 339(2):477-84. PubMed ID: 16300733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advantage of a baculovirus expression system for protein-protein interaction studies. Involvement of posttranslational phosphorylation in the interaction between wt p53 protein and poly(ADP-ribose) polymerase-1.
    Schmid G; Wojciechowski J; Wesierska-Gadek J
    Acta Biochim Pol; 2005; 52(3):713-9. PubMed ID: 16082409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.