These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Odyssey of agrobacterium T-DNA. Ziemienowicz A Acta Biochim Pol; 2001; 48(3):623-35. PubMed ID: 11833771 [TBL] [Abstract][Full Text] [Related]
5. The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants. Hodges LD; Lee LY; McNett H; Gelvin SB; Ream W J Bacteriol; 2009 Jan; 191(1):355-64. PubMed ID: 18952790 [TBL] [Abstract][Full Text] [Related]
6. Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. Albright LM; Yanofsky MF; Leroux B; Ma DQ; Nester EW J Bacteriol; 1987 Mar; 169(3):1046-55. PubMed ID: 3029014 [TBL] [Abstract][Full Text] [Related]
7. DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Grimsley N; Hohn B; Ramos C; Kado C; Rogowsky P Mol Gen Genet; 1989 Jun; 217(2-3):309-16. PubMed ID: 2770696 [TBL] [Abstract][Full Text] [Related]
10. Big news for plant transformation. Michelmore R Nat Biotechnol; 1996 Dec; 14(13):1653-4. PubMed ID: 9634844 [No Abstract] [Full Text] [Related]
11. Finding a way to the nucleus. Gelvin SB Curr Opin Microbiol; 2010 Feb; 13(1):53-8. PubMed ID: 20022799 [TBL] [Abstract][Full Text] [Related]
12. Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid of Agrobacterium tumefaciens. Veluthambi K; Ream W; Gelvin SB J Bacteriol; 1988 Apr; 170(4):1523-32. PubMed ID: 2832367 [TBL] [Abstract][Full Text] [Related]
13. Agrobacterium rhizogenes as a vector for transforming higher plants. Tepfer M; Casse-Delbart F Microbiol Sci; 1987 Jan; 4(1):24-8. PubMed ID: 3153165 [TBL] [Abstract][Full Text] [Related]
14. Gene transfer to plants by diverse species of bacteria. Broothaerts W; Mitchell HJ; Weir B; Kaines S; Smith LM; Yang W; Mayer JE; Roa-RodrÃguez C; Jefferson RA Nature; 2005 Feb; 433(7026):629-33. PubMed ID: 15703747 [TBL] [Abstract][Full Text] [Related]
15. A binary-BAC system for plant transformation with high-molecular-weight DNA. Hamilton CM Gene; 1997 Oct; 200(1-2):107-16. PubMed ID: 9373144 [TBL] [Abstract][Full Text] [Related]
16. T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Hansen G; Shillito RD; Chilton MD Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11726-30. PubMed ID: 9326678 [TBL] [Abstract][Full Text] [Related]
17. Transfer of T-DNA from Agrobacterium to the plant cell. Zupan JR; Zambryski P Plant Physiol; 1995 Apr; 107(4):1041-7. PubMed ID: 7770515 [TBL] [Abstract][Full Text] [Related]
18. Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menziesii. Morris JW; Morris RO Proc Natl Acad Sci U S A; 1990 May; 87(9):3614-8. PubMed ID: 2110367 [TBL] [Abstract][Full Text] [Related]
19. Biological systems of the host cell involved in Agrobacterium infection. Citovsky V; Kozlovsky SV; Lacroix B; Zaltsman A; Dafny-Yelin M; Vyas S; Tovkach A; Tzfira T Cell Microbiol; 2007 Jan; 9(1):9-20. PubMed ID: 17222189 [TBL] [Abstract][Full Text] [Related]
20. Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Sheng J; Citovsky V Plant Cell; 1996 Oct; 8(10):1699-710. PubMed ID: 8914322 [No Abstract] [Full Text] [Related] [Next] [New Search]